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One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin
Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at
64 x 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de-
rived mathematically from 1600 separate, randomly selected measurements, using a method called

compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal
Processing Magazine, July 2007. © 2007 IEEE.)
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Compressed Sensing Makes
Every Pixel Count

compactis beautiful. Butif you've ever shopped for a digi-

tal camera, you might have noticed that camera manufac-
turers haven’t gotten the message. A few years ago, electronic
stores were full of 1- or 2-megapixel cameras. Then along came
cameras with 3-megapixel chips, 10 megapixels, and even 60
megapixels.

Unfortunately, these multi-megapixel cameras create enor-
mous computer files. So the first thing most people do, if they
plan to send a photo by e-mail or post it on the Web, is to com-
pact it to a more manageable size. Usually it is impossible to
discern the difference between the compressed photo and the
original with the naked eye (see Figure 1, next page). Thus, a
strange dynamic has evolved, in which camera engineers cram
more and more data onto a chip, while software engineers de-
sign cleverer and cleverer ways to getrid of it.

In 2004, mathematicians discovered a way to bring this
“armsrace” to a halt. Why make 10 million measurements, they
asked, when you might need only 10 thousand to adequately
describe your image? Wouldn'’t it be better if you could just
acquire the 10 thousand most relevant pieces of information
at the outset? Thanks to Emmanuel Candes of Caltech, Ter-
ence Tao of the University of California at Los Angeles, Justin
Romberg of Georgia Tech, and David Donoho of Stanford
University, a powerful mathematical technique can reduce the
data a thousandfold before it is acquired. Their technique,
called compressed sensing, has become a new buzzword in
engineering, but its mathematical roots are decades old.

As a proof of concept, Richard Baraniuk and Kevin Kelly of
Rice University even developed a single-pixel camera. However,
don’t expect it to show up next to the 10-megapixel cameras
at your local Wal-Mart because megapixel camera chips have a
built-in economic advantage. “The fact that we can so cheaply
build themis due to avery fortunate coincidence, that the wave-
lengths of light that our eyes respond to are the same ones
that siliconresponds to,” says Baraniuk. “This has allowed cam-
era makers to jump on the Moore’s Law bandwagon”—in other
words, to double the number of pixels every couple of years.

Thus, the true market for compressed sensing lies in non-
visible wavelengths. Sensors in these wavelengths are not so
cheap to build, and they have many applications. For example,
cell phones detect encoded signals from a broad spectrum of
radio frequencies. Detectors of terahertz radiation' could be
used to spot contraband or concealed weapons under clothing.

TRASH AND COMPUTER FILES HAVE ONE THING in common:

Emmanuel Candes. (Photo cour-
tesy of Emmanuel Candes.)

'This is a part of the electromagnetic spectrum that could either be
described as ultra-ultra high frequency radio or infra-infrared light,
depending on your point of view.
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Figure 1. Normal scenes from everyday life are compressible with respect to a basis of wavelets. (left)
A testimage. (top) One standard compression procedure is to represent the image as a sum of wavelets.
Here, the coefficients of the wavelets are plotted, with large coefficients identifying wavelets that make a
significant contribution to the image (such as identifying an edge or a texture). (right) When the wavelets
with small coefficients are discarded and the image is reconstructed from only the remaining wavelets,
it is nearly indistinguishable from the original. (Photos and figure courtesy of Emmanuel Candes.)
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Even conventional infrared light is expensive to image. “When
you move outside the range where silicon is sensitive, your
$100 camera becomes a $100,000 camera,” says Baraniuk.
In some applications, such as spacecraft, there may not be
enough room for a lot of sensors. For applications like these, it
makes sense to think seriously about how to make every pixel
count.

The Old Conventional Wisdom
The story of compressed sensing begins with Claude Shannon,
the pioneer of information theory. In 1949, Shannon proved
that a time-varying signal with no frequencies higher than N
hertz can be perfectly reconstructed by sampling the signal at
regular intervals of 1/2N seconds. But it is the converse theo-
rem that became gospel to generations of signal processors: a Terence Tao. (Photo courtesy of
signal with frequencies higher than N hertz cannot be recon- Reed Hutchinson/UCLA.)
structed uniquely; there is always a possibility of aliasing (two
different signals that have the same samples).
In the digital imaging world, a “signal” is an image, and a
“sample” of the image is typically a pixel, in other words a mea-
surement of light intensity (perhaps coupled with color infor-
mation) at a particular point. Shannon’s theorem (also called
the Shannon-Nyquist sampling theorem) then says that the res-
olution of an image is proportional to the number of measure-
ments. If you want to double the resolution, you'd better dou-
ble the number of pixels. This is exactly the world as seen by
digital-camera salesmen.
Candes, Tao, Romberg, and Donoho have turned that world
upside down. In the compressed-sensing view of the world, the
achievable resolution is controlled primarily by the informa-
tion content of the image. An image with low information con-
tent can be reconstructed perfectly from a small number of
measurements. Once you have made the requisite number of
measurements, it doesn’t help you to add more. If such images
were rare or unusual, this news might not be very exciting. But
in fact, virtually all real-world images have low information con-
tent (as shown in Figure 1).
This point may seem extremely counterintuitive because the
mathematical meaning of “information” is nearly the opposite
of the common-sense meaning. An example of an image with
high information content is a picture of random static on a TV
screen. Most laymen would probably consider such a signal to
contain no information at all! But to a mathematician, it has
high information content precisely because it has no pattern;
in order to describe the image or distinguish between two such
images, you literally have to specify every pixel. By contrast,
any real-world scene has low information content because it is
possible to convey the content of the image with a small num-
ber of descriptors. A few lines are sufficient to convey the idea
of aface, and a skilled artist can create arecognizable likeness
of any face with a relatively small number of brush strokes.>

>The modern-day version of the “skilled artist” is an image compres-
sion algorithm, such as the JPEG-2000 standard, which reconstructs
a copy of the original image from a small number of components
called wavelets. (See “Parlez-vous Wavelets?” in What’s Happening in
the Mathematical Sciences, Volume 2.)
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Justin Romberg. (Photo courtesy
of Justin Romberg.)

The idea of compressed sensing is to use the low infor-
mation content of most real-life images to circumvent the
Shannon-Nyquist sampling theorem. If you have no infor-
mation at all about the signal or image you are trying to
reconstruct, then Shannon’s theorem correctly limits the res-
olution that you can achieve. But if you know that the image is
sparse or compressible, then Shannon’s limits do not apply.

Long before “compressed sensing” became a buzzword,
there had been hints of this fact. In the late 1970s, seismic
engineers started to discover that “the so-called fundamen-
tal limits weren’t fundamental,” says Donoho. Seismologists
gather information about underground rock formations by
bouncing seismic waves off the discontinuities between strata.
(Any abrupt change in the rock’s state or composition, such
as a layer of oil-bearing rock, will reflect a vibrational wave
back to the surface.) In theory the reflected waves did not
contain enough information to reconstruct the rock layers
uniquely. Nevertheless, seismologists were able to acquire
betterimages than they had aright to expect. The ability to “see
underground” made oil prospecting into less of a hit-or-miss
proposition. The seismologists explained their good fortune
with the “sparse spike train hypothesis,” Donoho says. The hy-
pothesis is that underground rock structures are fairly simple.
At most depths, the rock is homogeneous, and so an incoming
seismic wave sees nothing at all. Intermittently, the seismic
waves encounter a discontinuity in the rock, and they return a
sharp spike to the sender. Thus, the signal is a sparse sequence
of spikes with long gaps between them.

In this circumstance, it is possible to beat the constraints of
Shannon’s theorem. It may be easier to think of the dual sit-
uation: a sparse wave train that is the superposition of just
a few sinusoidal waves, whose frequency does not exceed N
hertz. If there are K frequency spikes in a signal with maximal
frequency N, Shannon’s theorem would tell you to collect N
equally spaced samples. But the sparse wave train hypothesis
lets you get by with only 3K samples, or even sometimes just
2K. The trick is to sample at random intervals, not at regular in-
tervals (see Figures 2 and 3). If K << N (which is the meaning of a
“sparse” signal), then random sampling is much more efficient.

In other fields, such as magnetic resonance imaging, re-
searchers also found that they could “undersample” the data
and still get good results. At scientific meetings, Donoho says,
they always encountered skepticism because they were try-
ing to do something that was supposed to be impossible. In
retrospect, he says that they needed a sort of mathematical
“certificate,” a stamp of approval that would guarantee when
random sampling works.

The New Certificate

Emmanuel Candes, a former student of Donoho, faced the same
skepticism in 2004, while working with a team of radiologists
on magnetic resonance imaging. In trial runs with a “phantom
image” (in other words, not a real patient), he was able to recon-
struct theimage perfectly fromundersampled data. “There was
no discrepancy at all between the original and the reconstruc-
tion,” Candes says. “I actually got into a bit of trouble, because
they thought Iwas fudging.”

118

WHAT’S HAPPENING IN THE MATHEMATICAL SCIENCES



Sparse Signal k-space of Sparse Signal
LR J L e PRI 2 RN A AR . 88 8
(NN N RN RN RN RN NN RN

[.";ﬂ.—--_— d under-sampling|
e random under-sampling
(a) (b}
Result of equispaced 8-fold under-sampling R f random 8-fold under-samplin:

L g

m— gquispaced under-sampling
= = original
(c) (d)

Figure 2. Reconstructing a sparse wave train. (a) The frequency spectrum of a 3-sparse signal. (b) The
signal itself, with two sampling strategies: regular sampling (red dots) and random sampling (blue dots).
(c) When the spectrum is reconstructed from the regular samples, severe “aliasing” results because the
number of samples is 8 times less than the Shannon-Nyquist limit. It is impossible to tell which frequen-
cies are genuine and which are impostors. (d) With random samples, the two highest spikes can easily
be picked out from the background. (Figure courtesy of M. Lustig, D. Donoho, J.Santos and J. Pauly,
Compressed Sensing MRI, Signal Processing Magazine, March 2008. © 2008 IEEE.)
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Figure 3. In the situation of Figure 2, the third frequency spike can be recovered by an iterative thresh-
olding procedure. If the signal was known to be 3-sparse to begin with, then the signal can be recon-
structed perfectly, in spite of the 8-fold undersampling. In short, sparsity plus random sampling enables
perfect (or near-perfect) reconstruction. (Figure courtesy of M. Lustig, D. Donoho, J.Santos and J. Pauly,
Compressed Sensing MRI, Signal Processing Magazine, March 2008. © 2008 IEEE.)
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Candes and Tao found a
shortcut thatnot only
runs fasterona
computer, butalso
explains why random
sampling works so
much better than
regular sampling.

At this point, Candes did a fortuitous thing: he talked with
Terry Tao, a 2006 Fields medalist. The two mathematicians
happened to have children at the same pre-school. While they
were dropping them off one day, Candes told Tao about the
too-good-to-be-true reconstructions. “I had begun looking for
an explanation and made some headway, but I was stuck at a
particular point,” Candes says.

“Terryreacted like amathematician,” Candes continues. “He
said, Tm going to find a counterexample, showing that what
you have in mind cannot be true.” But a strange thing hap-
pened. None of the counterexamples seemed to work, and Tao
started listening more closely to Candes’ reasoning. “After a
while, he looked at me and said, ‘Maybe you're right,” Candes
says. With the speed for which Tao is legendary, within a few
days he had helped Candes overcome his obstacle and the two
of them began to sketch out the first truly general theory of
compressed sensing.

In the Candes-Romberg-Tao framework, a signal or an im-
age is represented as a vector x, a string of N real numbers.
This vector is assumed to be K-sparse, which means that in
some prescribed basis it is known to have at most K nonzero
coefficients. (K is assumed to be much less than N.) For exam-
ple, if the basis elements are standard coordinate vectors in
RV, then x literally consists of mostly zeroes. This is exactly the
situation of the sparse spike train hypothesis.

However, compressed sensing does not require a particu-
lar basis. Photographs, for example, are not at all sparse with
respect to the standard basis; they have many nonzero coef-
ficients (i.e., non-black pixels). JPEG compression has proven
that photographs are almost always approximately sparse with
respect to a different basis—the basis of wavelets. If ¥ repre-
sents the N x N matrix of basis vectors, then a K-sparse signal
with respect to that basis is one that can be written in the form
¥x, where x has at most K nonzero coefficients.

A sample y of the signal x, in the Candes-Romberg-Tao
framework, is a linear function of x: that is, y = ®x. The num-
ber of measurements in the sample is assumed to be smaller
than the signal, so ® is an M X N matrix with M < < N. By ele-
mentary linear algebra, there are infinitely many other vectors
x* such that &x* = y. However, provided that M > 2K, it will
normally be the case that none of the other solutions to the
equation &x* = y are sparse. Thus, if x is known in advance
to be sparse, it can in theory be reconstructed exactly from M
measurements.

Knowing that a unique solution exists is not the same thing
as being able to find it. The problem is that there is no way to
know in advance which K coordinates of x are nonzero. The
naive approach is to try all the possibilities until you hit on the
right one, but this turns out to be a hopelessly slow algorithm.
However, Candes and Tao found a shortcut that not only runs
faster on a computer, but also explains why random sampling
works so much better than regular sampling.

If your image consists of a few sparse dots or a few sharp
lines, the worst way to sample it is by capturing individual pix-
els (the way a regular camera works!). The best way to sample
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the image is to compare it with widely spread-out noise func-
tions. One could draw an analogy with the game of “20 ques-
tions.” If you have to find a number between 1 and N, the worst
way to proceed is to guess individual numbers (the analog of
measuring individual pixels). On average, it will take you N/2

Figure 4. A random measurement of a sparse signal, S, gener-
ates a subspace of possible signals (green) that could have pro-
duced that measurement. Within that green subspace, the vector
of smallest 1, -norm (S) is usually equal to S. (Figure courtesy of
R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal Pro-
cessing Magazine, July 2007. © 2007 IEEE.)

guesses. By contrast, if you ask questions like, “Is the number
less than N/2?” and then “Is the number less than N/4?” and
so on, you can find the concealed number with at most log, N
questions. If Nis alarge number, this is an enormous speed-up.

Notice that the “20 questions” strategy is adaptive: you
are allowed to adapt your questions in light of the previous
answers. To be practically relevant, Candes and Tao needed
to make the measurement process nonadaptive, yet with the
same guaranteed performance as the adaptive strategy just
described. In other words, they needed to find out ahead of
time what would be the most informative questions about the
signal x. That this can be done effectively is one of the great
surprises of the new theory. The idea of their approachis called
l,-minimization.

The ly-norm of a vector is simply the number of nonzero en-
tries in the vector, which can be somewhat informally written
as follows:

(X1, X2, e X)) o = D 1X:1°.
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Arandom plane that
passes through a vertex
is virtually certainto
miss the interior of the
cross polytope. Thanks
to this “miracle of
high-dimensional
geometry,” as Candes
callsit, the [;,-minimizer
will almost always be
the correctsignal, x.

(This formula uses the convention that 0° = 0.) The [;-norm is
obtained by replacing the 0’s in this equation by 1’s:

(X1, X2y ey X)) 11 = D |21

In this language, the signal x is the unique solution to ®x* =
y with the smallest lp-norm. But in many cases, Candes and Tao
proved, itis also the unique solution with the smallest I, -norm.
This was a critical insight because I,-minimization is a linear
programming problem, which can be solved by known, efficient
computer algorithms. (See “Smooth(ed) Moves,” What’s Hap-
pening in the Mathematical Sciences, Volume 6.)

Figure 4 illustrates why the [;-minimizer is often the same
as the Ip-minimizer. In 3-dimensional space, the set of unit vec-
tors in the I;-norm is an octahedron. Think of the sparse vec-
tor x as lying on a coordinate axis (because it has lots of zero
coordinates). Therefore it is at one of the vertices of the oc-
tahedron. The set of vectors x* such that ®x* = y is a plane
passing through the point x. Most planes that pass through x
intersect the octahedron only at the point x; in other words, x
is the unique point on the plane with the minimum I;-norm. So
if you simply pick the measurement ® “at random,” you have a
very good chance of reconstructing x uniquely.

Unfortunately, picking ® at random won’t always work. You
might get unlucky and choose a plane through x that passes
through the interior of the octahedron. If so, the ;-minimizer
will not be the same as the Iy-minimizer. The algorithm will
produce an erroneous signal, x*. But the three-dimensional pic-
ture in Figure 4 (page 121) is somewhat misleading because the
image vectors typically lie in a space with thousands or mil-
lions of dimensions. The analog of the octahedron in million-
dimensional space is called the cross polytope; and in million-
dimensional space the cross polytope is very, very, very pointy.
A random plane that passes through a vertex is virtually cer-
tain to miss the interior of the cross polytope. Thanks to this
“miracle of high-dimensional geometry,” as Candes calls it, the
I;-minimizer will almost always be the correct signal, x.

In summary, this is what the theory of compressed sensing
says:

e For many M X N matrices ®, the unique K-sparse so-
lution, x, to the equation ®x* = vy, can be recovered
exactly.

e N must be much larger than K. However, M (the num-
ber of measurements) need only be a little larger than
K. Specifically, M must be roughly K log(N/K). Notice
that the dependence on N is logarithmic, so the “20
questions” speed-up has been achieved.

e The K-sparse solution is found by [;-minimization,
which canbe proved tobe equivalent to l-minimization
under certain assumptions on the measurement ma-
trix, .

e Random matrices ¢ almost always satisfy those as-
sumptions.

The whole story remains essentially unchanged if the sig-
nal is sparse with respect to a basis ¥ that is not the standard
basis of coordinate vectors (e.g., the wavelet basis). The only
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modification required is that the constraint, #x* = v, is re-
placed by the constraint ®¥x* = y.In this context, the random-
ness of the measurement matrix ® serves a double purpose.
First, it provides the easiest set of circumstances under which
I;-minimization is provably equivalent to lp-minimization. Sec-
ondly, and independently, it ensures that the set of measure-
ment vectors (the rows of ®) are as dissimilar to the image basis
(the columns of ¥) as possible. If the image basis consists of
spikes, the measurement basis should consist of spread-out
random noise. If the image basis consists of wavelets, then the
measurement basis should consist of a complementary type of
signal called “noiselets.”

“Our paper showed something really unexpected,” says Can-
des. “It showed that using randomness as a sensing mechanism
is extremely powerful. That’s claim number one. Claim number
two is that it is amenable to rigorous analysis.

“What mathematicians liked [about the paper] was the way
it merged analysis and probability theory. A lot of people in
my field, analysis, did not think about probability theory as be-
ing useful or worthy of attention. At the very intellectual level,
it changed the mindset of those people and caused them to
engage this field.”

Richard Baraniuk. (Photo cour-
tesy of Richard Baraniuk.)

Recent Developments

Tao and Candes’ preprint appeared in 2004, as did a paper by
Donoho announcing similar results. By the time that Tao and
Candes’ paper actually appeared in print, in 2006, it had been
cited more than 100 times. Since then, there have been many
advances, both from the theoretical and the practical side.

One question left unanswered by the original paper was
how well compressed sensing would hold up if the measure-
ments contained some random error (an inevitable problem
of real-world devices), or if the images themselves were not
exactly sparse. In photography, for instance, the assumption
of a sparse signal is not literally true. It is more realistic to
assume the signal is compressible, which means that the vast
majority of the information in the signal is contained in a
few coefficients. The remaining coefficients are not literally
zero, but they are small. Under these circumstances, even the
lo-minimizer does not match the signal exactly, so there is no
hope for the I, -minimizer to be exactly correct.

In 2005, Candes, Romberg, and Tao showed that even
with noisy measurements and compressible (but not sparse)
signals, compressed sensing works well. The error in the re-
constructed signal will not be much larger than the error in the
measurements, and the error due to using the I;-minimizer will
not be much greater than the penalty already incurred by the
lp-minimizer. That is, the I, -minimizer accurately recovers the
most important pieces of information, the largest components
of the signal. Figure 5 (see next page) shows an example of
the performance of compressed sensing on a simulated image
with added noise.

Mathematicians have also been working on new algorithms
that run even faster than the standard linear programming
techniques that solve the [;-minimization problem. Instead
of finding the largest K coefficients of x all at once, they find
them iteratively: first the largest nonzero coefficient, then the
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Figure 5. Compressed sensing with noisy data. (a) An image with added noise. (b) The image, under-
sampled and reconstructed using the Shannon-Nyquist approach. As in Figure 2, artifacts appear in the
reconstructed image. (d) The same image, undersampled randomly and reconstructed with a “too opti-
mistic” noise model. Although there are no artifacts, some of the noise has been misinterpreted as real
variation. (c) The same image, reconstructed from a random sample with a more tolerant noise model.
The noise is suppressed and there are no artifacts. (Figure courtesy of Michael Lustig.)
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second-largest one, and so on. The first such algorithm, called
Orthogonal Matching Pursuit (OMP), did not offer the same
guarantees of accuracy that I;-minimization did. However,
there is now a variety of colorfully named variations, such as
Regularized OMP (ROMP) and Stagewise OMP (StOMP), which
successfully combine the accuracy of I;-minimization with the
speed of OMP. These algorithms have the advantage of being
somewhat more intuitive than the “high-dimensional miracle”
of I;-minimization; Figure 3 shows an example.

Meanwhile, researchers in several different fields are explor-
ing practical applications of compressed sensing. Baraniuk
and Kelly’s single-pixel camera, built in 2006, uses an array
of bacteria-sized mirrors to acquire a random sample of the
incoming light. (See Figure 6.) Each mirror can be tilted in one
of two ways, either to reflect the light toward the single sensor
or away from it. Thus the light that the sensor receives is a
weighted average of many different pixels, all combined into
one pixel. By taking Klog(N/K) snapshots, with a different
random selection of pixels each time, the single-pixel camera
was able to acquire a recognizable picture with a resolution
comparable to N pixels. (See figure “One Is Enough,” page 114.)

Baraniuk and Kelly’s team is now working on “hyperspec-
tral cameras,” which would reconstruct a complete spectrum
at each point of the image. “A conventional digital image has
red, blue and green pixels,” Baraniuk says. “It’s great for mak-
ing a picture that fools the human eye, but it doesn’t capture
the essence of the wavelengths given off by different materi-
als. What you’d really like would be a spectrum of thousands
of colors instead of just three. This would allow you to tell the
difference between green paint on a car and a green leaf on
a bush.” But with thousands of colors at each of millions of
pixels, data compression becomes a serious issue.

Photodiode Bitstream

| Reconstruction I—b Image

Figure 6. A schematic diagram of the “one-pixel camera.” The “DMD” is the grid of micro-mirrors that
reflect some parts of the incoming light beam toward the sensor, which is a single photodiode. Other
parts of the image (the black squares) are diverted away. Each measurement made by the photodiode is
a random combination of many pixels. In “One is Enough” (p.114), 1600 random measurements suffice
to create an image comparable to a 4096-pixel camera. (Figure courtesy of Richard Baraniuk.)
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With so many questions
and somany choices, it
isimpossible at present
to say what the most
successful application
of compressed sensing
will be. However, one
thing is clear: Engineers
are finally thinking
outside the box of
Shannon’s theorem.

Baraniuk and his former student Michael Wakin, now at the
University of Michigan, have also worked on a problem of ob-
jectdetection. For many applications, producing an actual pho-
tograph may not be as important as recognizing quickly what
is there. For example, a security system may have to identify a
face or a vehicle. For example, Baraniuk says, you could teach
it to recognize the difference between a Corolla and a Porsche.
The computer will have images of Corollas and Porsches stored
in it, but the vehicle in front of the camera may be rotated in a
way that does not precisely match the photos. In this applica-
tion, the image vector has a different kind of sparse structure.
Instead of lying on a coordinate K-plane, the vector will lie on
a curved K-dimensional manifold in N-dimensional space. (In
this case, K would be equal to 3.) In this context, Wakin showed
that on the order of K log N measurements still suffice to make
the call.

Some applications of compressed sensing may lie com-
pletely outside the realm of imaging. One such example is
“analog to digital conversion,” a fundamental aspect of wire-
less communications. For example, the CDMA cell phone
standard takes a voice message, which contains sound fre-
quencies up to 4096 hertz, and spreads it out over a radio
spectrum that spans hundreds of thousands of hertz. The
signal is sparse because it still contains only the information
that was squeezed inside those 4096 hertz. So a detector
that performs compressed sensing should be able to recover
the signal more rapidly than a detector based on Shannon’s
theorem.

In digital photography, Moore’s law lets you pack twice as
many detectors on a chip every two years. But in the world of
analog to digital conversion, Baraniuk says, “the equivalent fig-
ure of merit doubles every 6 to 8 years.” So instead of waiting
decades for a hardware solution, it really makes sense to solve
the problem with software based on compressed sensing.

Finally, compressed sensing may find some medical applica-
tions—which would be only natural because the theory was di-
rectly inspired by a problem in magnetic resonance imaging.
MRI scanners have traditionally been limited to imaging static
structures over a short period of time, and the patient has been
instructed to hold his or her breath. But now, by treating the
image as a sparse signal in space and time, MRI scanners have
begun to overcome these limitations and produce images, for
example, of a beating heart. Figure 7 shows how a sparse recon-
struction algorithm can provide a sharp image of the arteries
in a patient’s leg even with as many as 20 times less data than a
conventional angiogram.

One hurdle that compressed sensing may have to overcome
is how to develop practical “incoherent sensors.” A single mea-
surement, in compressed sensing, is an inner product of the
incoming compressible signal with a random, noisy test signal.
Baraniuk’s single-pixel camera accomplishes the inner prod-
uct by using mirrors to deflect certain parts of the light beam
toward the sensor, while deflecting other parts away. Inreal ap-
plications, if the hardware that performs the incoherent mea-
surements is more expensive than the array of sensors that it
is designed to replace, then the economic case for compressed
sensing will disappear.
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With so many questions and so many choices, it is impossi-
ble at present to say what the most successful application of
compressed sensing will be. However, one thing is clear: Engi-
neers are finally thinking outside the box of Shannon’s theo-
rem.
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Figure 7. An angiogram. From bottom to top, the angiogram is progressively undersampled by larger
and larger factors. With a Shannon-Nyquist sampling strategy, the image degrades as the degree of
undersampling increases. With compressed sensing, the image remains very crisp even at 20-fold un-
dersampling. The approach used here and in Figure 5 is not I, -minimization but I, -minimization of the
spatial gradient. (Figure courtesy of Michael Lustig.)
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