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In the early 70's the British company Solartron designed the first precision analog-digital converter (ADC) 
with a dynamic integrator. The same company now manufactures several types of  voltmeters based on such ADCs. 
They include the models 7065, 7071, and 7081; the latter is one of the most accurate voltmeters in the world, correct 

to 8.5 decimal places. ADCs with dynamic integrators did not get much attention in the literature [1-8]. An analysis 

carried out by the author [9] proved that the theoretical principles of  such ADCs are much more complex than, for 

example, those of  ADCs based on the classical principle of  double-slope integration with approximately the same 
hardware complexity. 

Let  us analyze the block diagram (Fig. 1) of  an ADC with dynamic integration [7, 8]. This ADC includes a 

three-input  integrator, two comparators, two analog switches, and a reversible pulse counter. The voltage U x to be 

converted is applied to the first integrator input, and auxiliary alternating square-wave scan voltage U is applied to 

the second input, and a feedback reference voltage U E (+E 1 or --E~.) is applied to the third integrator input through 

switches controlled by the comparator output signals. The same signals control the inputs of the reversible counter to 
whose count input are applied pulses of  reference frequency fo. The time diagrams shown in Fig. 2 represent the 

auxiliary scan voltage U (a), the integrator output voltage Uf (b), the reference voltage U E at the integrator input (c), 

and the voltage to be converted U x (d). The integrator output voltage varies linearly, its slope changing when the 

comparator voltages reach their threshold level and operate the analog switches. The comparator output voltages also 

act as the reversible counter  control signals t h and tt  (see notation in Fig. 2) whose duration is the same when U x = 0. 

If, however, U x # 0, then t h # tt. The number of reference frequency pulses entering the reversible counter in 

response to the two control signals is different ,  the counter code being proportional to the difference between t h and 
tr The conversion result appears after  one square-wave period is completed. If  the charges stored by the integrator 

during one square-pulse period for all three inputs are balanced (i.e., the sum of  these charges is zero), we have the 
equality 

2UxT/(RxC)~ATE/(ReC), 

where 2T is the duration of  one square-wave period, R x and R~. are resistors (see Fig. 1), C is the capacitance of  the 

integrator capacitor, E is the feedback reference voltage (E 1 = I--E 2 I= E), and AT is the difference between the 
time intervals t h and tt. 

Hence, the ADC conversion equation has the form 

AT=2UxTR2/( ERx) (1) 

o r  

.~:U~NoR~/(ER~), (2) 

where N = A T / f  o and N O = 2Tf  o. 
The derivation of  this equation presumes realization of certain conditions which will be discussed below. 
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Let us analyze the ADC operation. Let us assume that at the instant the first ADC operation cycles (square- 
wave periods) begins the input voltage suddenly changed from Ux(~ to U x. Let us observe how the time intervals tls 
tat(i), t2h(i), and qh (i) (superscript i in parentheses denote the cycle number) vary from cycle to cycle.. Obviously, the 
following: equalities are true: 

i l l )  ,r, ,.p ~{o) 
~h----'~--~ z' (3) 

~h----'lh Ux-}-U..t- E ' ( 4 )  

t(D--T T /I) 
z s  - -  e - - ' z h '  ( 5 )  

r ,~n u , + u - e  
s  -- 2 s Ux--U--E ' (6) 

(Uo14Uo~)RC 2UoRC 
T,------ Ux--U ----Ux--U' 

(Uo,+Uo~)RC 2UoRC 
T~---- Ux+U -- Ux+U " 

Here we assumed thatR I=R 2=R x=R;Uol=l-Uo2l=Uo;U I=I --U 21 =UandE l=l --E 21 =E. 

cycle:. 
Successively substituting (5), (4), and (3) into (6) we get an expression for the time interval h t  in the first 

'~ r~X ~ ~' ~7) 

Ux+U--E 
where ALfl~--(T--T~) Ux-~--O_E--(T--Ti)B; 

(U~+U--E)(U,--U+g) 
B= (U,- -U- .E)(U~+U+E)" 
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Using (7) as a recurrence formula, we can get expressions for the time interval t ~  in subsequent cycles: 

t ( 2 ) _ _ A  .~ r _t~A_B~_LI(O)B~ 

t ~ = ~ i z + ~ = ~ ( ~  + ~ + ~ ) + ~ ' ~  ~ , 

(n)= (n--l) = ~ Bl-l•  ~n 11s Als163 B A~s 1=~ T ' l s  " 

(8) 

The last expression is seen to have two terms: a geometric progression with the ratio B which converges if 
I BI < 1 and a term tlt(~ n whose  absolute value decreases under the same condit ion when  n ~ oo. Thus, if  the above 
inequality is satisfied, tl~ becomes  constant after the transient process ends and can be found applying the we l l -known 
formulas of  geometric progression: 

t ~ ) = l  rntm)~A s ft I--B) I~, n -~  1s I ' 
(9) 

Similarly, for the time interval t~.~ we have 

/(1)--A2 ~ t(O)BD 2Z-- -s 2~ , 

A . Ux--U--E Ux--Uq- E 
where 2 s 1 6 3  =T--Tz+(T--Tt )  Ux+U+E ; 

(U,--U--E)(U~~ 
D =  (u~+u-E) (u~~ 

I1 

2~6 7=1 

t(~) = A~, § ~lo~) Ux--U~E 
2s 1--B o r  "2g ----'is Ux+U--E " 

For the interval %.h: 

t~a= T--r=--&f. -( T-- T=o)BD+ I{~ SD, 

where T~o is the value o f  T~ before the start o f  the first cycle; 

(10) 

(11) 

t~ 

t~ " T--'T~--Azh3 "~-1 Iff-- I~( T - Tz~ BnD-r-t(2~ BaD 

For the interval tlh: 

t 0 h )  . . . . .  (T_rz )  Ux.q-U+E Ux--U+ E q-Alh+(T--T2")BD 

Ux+U+E (Ux+U+EJ(U(f}--U+E) 
where A2h-=A2 s Ux--U+E : F= (U,~--U+ E) (U~x~ ' 

I/,:q-U4 E ~o~ 
U~.--U+E +tjhBD" 

(12) 

(13) 

(m --T~) Ux+U+E ~ tff_lq_(T_T.,o) "< 
tih = - - ( T  U~-U+E 4"4i~ i.=~ 

vx+u+ E B.D_t;o~,,OF, 
X Ux_U+H 

Ux + U4 E .4 ~la fl~ "~=-(r-r~) u . - u + E  + ~ or t{~)= 

[ ] ~ , - k ~ ' ~  E 
= - - t 2 h u v _ _ U + E  " 

(14) 

(15) 
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Using the above expression it is easy to derive the conversion equation of the analyzed ADC. Thus, for 

steady-state conditions using expressions (9), (11), (13), and (15), we have 

lh ~ n , . t  z , t  �9 ' ' 

.V "xTi~)- UxA,'o/E. 

Substituting for the sake of generality Ux/R x and E/R= for Ux/R and E/R,  respectively, we get expressions (1) and 
(2). 

Expressions (8), (10), (12), and (14), which define the dynamic error of the ADC, can be used to describe the 

output settling process. This error,  which takes place when the ADC output code is read before the transients are 

terminated, can be considerable. The error must be taken into account when ADCs are used as parts of an automatic 

system. 
The discussed ADC is described by the general block diagram proposed by the author in [10]. 

Let  us consider the output settling process. As mentioned above, in response to a change in Ux, the output 

settles according to a geometric progression. This process converges provided I B I < 1. It must, however, be 

mentioned that the operating range of  the given ADC is narrower than the range in which the condition I B [ < 1 is 

satisfied. The point is that the slope of  the integrator output voltage in the sections corresponding to time intervals t h 

and t t  (see Fig. 2) decreases with increasing U x. If I U x I = I U --  E I , this section of the curve becomes 
horizontal. 

To select the operating input voltage range, it is necessary to take into account the nature of the ADC input 

noise. If  there is no noise, the final operating range should be taken as (0.7-0.8)U x in order to satisfy the inequality 

IUxl < IU - - E l  The operating range may be even smaller in the presence of noise. 

The described ADC was simulated on the basis of  expressions derived above (the simulation was carried out 

using the Turbo Pascal algorithmic language and an IBM PC AT personal computer).  The model was also used to 

analyze the settling process of the ADC output in response to an input voltage change for different  circuit parameters. 

The relative conversion error was tens of  percents in one cycle, less than 0.1% in two cycles, less than 0.005% in three 

cycles, and less than 10-~ after  5-7 cycles. The simulation as well as an analysis of the author's model fully 
confirmed the above results. 
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