Clean room analysis of the PMS150C
programming sequence

Thanks to everyone involved in investigating the Padauk microcontrollers on the EEV and
uC.net forums. Please see here for further background and work leading to this analysis:

http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-engineering
https://www.mikrocontroller.net/topic/461002

http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-engineering
https://www.mikrocontroller.net/topic/461002

Clean Room Analysis Disclaimer

= This report is solely based on analyzing datalogs of the programming sequence as provided here:
http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/msg2096917/#msg2096917

= No attempts have been made by me to reverse engineer any of the software provided by Padauk.

* The information in this document is provided “as is”, without warranty of any kind.

= No attempts have been made so far to verify any of the observations on actual hardware. Please update
where neccessary.

http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-engineering/msg2096917/#msg2096917

Initial analysis of data logs.

From a first glance, the programming interface of the PMS150C seems to be a straight forward SPI interface.
MSB first, data is valid on rising edge of clk.

. . MOSI pascmcing Taarwm E : pAvCINLTMIWM SCK
The pinout is as follows: owo [Z] 5] o
MISO rascm2 E 3 paswnste \/PP
= PA3: SCK/Clock (driven by writer/master) PMS160C-U08 (SOT23-6 60mil)

= PA4: MOSI/Data in (driven by writer/master, data is valid on rising edge of clk. Data is set at arbitrary times
due to random timing of writer software)

= PAS: VPP

= PA6: MISO/Data out (driven by MCU, data is valid on rising edge of clk. Data is set on falling edge since the
MCU does not have an internal clk)

* Furthermore, the programmer needs to control VDD to reset the MCU.

VPP is 7.5V during read and 10.8 V during writing.

VDD is 6.0 V during programming, 4 V during entry and 6.5 V/2 V for verification. | may be sufficient to keep
VDD at 5V if you don't want to verify all corner cases.

Note: The PMS105C is a device with 13x1kbit memory and 13 bit instruction encoding.

Overview of dump2 — writing to previously programmed device

+100 ms +150 ms +200 ms +250 ms +300 ms +350 ms +400 ms +450 ms +500 ms +550 ms +600 ms +650 ms +700 ms +750 ms +800
T T T T T T T T T T T T T T T T T S O T S S T (O O S T T S S N S A T O N S A T SO S SO K S S SR T I S S S T

E=>— mudl

VPP =75 7.5
VDD=4.0 2.0

|

5

654 6 mminm 2.0 20 ‘6_0. 654 20

2 \V/div

10 V/div

E=Z» sPr: MISO data } }
» SPT: MISO bits | |
» SPI: MOSI data | |
» SPT: MOST bits | |

o g AT | e—
D D D CT | | ——

D D

Command A7 A6
Phase 0 1 2

= >
N oYy T

Summary of all phases of the programming sequence (Dump 2)

Phase Command VDD VPP Description

0 A7 (Write) 40V 75V Read device ID. This is achieved by initiating a dummy write that is aborted before starting the actualy OTP programming

1 A6 (Read) 2.0V 7.5V Read instruction memory words 0x03F0-Ox3FF at low VDD voltage corner. This region contains calibration data.

2 A6 (Read) 5.0V 7.5V Read instruction memory words 0x03F0-Ox3FF at standard voltage corner. This region contains calibration data. (Should this be VDD=6.5V? May be a bug)
3 A6 (Read) 20V 7.5V Read instruction memory words 0x000-0x3EF at low VDD voltage corner. Dump of full memory.

4 A7 (Write) 6.0V 10.8 V Write main memory region between 0x000-0x3EF. Only memory cells used by the program are written to.

5 A7 (Write) 6.0V 108V Write to 0x3F6/0x3F8/0x3FC/0x3FE. Housekeeping?

6 A6 (Read) 6.5V 7.5V Read instruction memory words 0x03F0-Ox3FF at high voltage corner for verification.

7 A6 (Read) 6.5V 7.5V Read main memory region between 0x000-0x3EF at high voltage corner for verification. Only previously written memory is read.
8 A6 (Read) 2.0V 7.5V Read instruction memory words 0x03F0-Ox3FF at low voltage corner for verification.

9 A6 (Read) 2.0V 7.5V Read main memory region between 0x000-0x3EF at low voltage corner for verification. Only previously written memory is read.
10 A7 (Write) 6.0V 10.8V Write to 0x3F6/0x3F8/0x3FC/0x3FE to store clock calibration data and code checksum.

11 A6 (Read) 6.5V 7.5V Read instruction memory words 0x03F0-Ox3FF at high voltage corner for verification.

12 A6 (Read) 2.0V 7.5V Read instruction memory words 0x03F0-Ox3FF at low voltage corner for verification.

= Note: For a fresh device, clock calibration takes place between steps 9 and 10.
Two additional phases are inserted (see dump 4).

Enter programming mode

+127000 ps +127200 ps +127400 ps +127600 ps +127800 ps
| | | | | | | | w | | | | | | | |

Send command/entry key

=»
e R S
MCU resets here. Reset voltage is 2V [640 mV] 5 V/div
Vdd floats? /
VDD = [4 V] 2 vjdi
VPP 8 V] 1 V/di
] b

100u 500

Each phase of the programming sequence is as follows:

LoONDUBAEWNPRE

~
~ O

[EEN
N

Set all pins to GND

Drive VPP to 7.5V (possibly >6V is threshold?)

wait 100us

Drive VDD to ~4V

wait 500us

Send key/command OxA5A5A5AX (X=6 for read, X=7 for write)
Ramp to target VPP (7.5 V for reading, 10.8V for writing)
Wait for 5 ms

Ramp to target VDD

Wait for 10 ms

Perform read or write operation (see later slides)

Pull VDD and VPP to GND

Programming mode is always entered with
Vpp=7.5V
vdd=4V

Voltages are only adjusted to final target after sending command (step 6).
Steps 7-10 can be skipped if initial voltages are kept.

Note: Logic levels scale with Vdd. If varying Vdd is implemented, this
needs to be considered in the SPI interface hardware (buffer).

Enter programming mode with voltage adjustment and read/write phase

+346 ms +348 ms +350 ms +352 ms +354 ms +356 ms +358 ms +360 ms +362 ms +364 ms
+ 1 | | 1 | | 1 1 1 | | | [1 | | | | | | 1 1 [| | [1 1 | | 1 1

Data in/out

[EIEIH

o — - L

5 V/div

Entry sequence Adjust VPP Adjust VDD Read / Write sequence
(Wait time for VPP is 5 ms) (Wait time for VDD is 10 ms)

OxA5A5A5A7 key/command — write

+356180 ps +356190 ps +356200 s +3562W s +356220 ys +356230 s

+356120 ps +356130 s +356140 ps 4356150 | +356160 s +356170 ps
(522 AR SO Sy [y (R (AN TP (RSN Y)Y A VUMM e OO TN OO Y J UYL TP, S, P YA (I (O TSN AN (R | R S ST [0 [P (PN [P T VO 1 G U, R Y M T TR T T I TR T T TR
S bt (R Tl ALY, |-
MISO pulled low by MCU after cycle 31
MISO floats
e e I RSN i L SO _——
(640 W) 2 VIl
»
[4 V]2 vidw

o LI IAARARARAAAAAAAAAARARARAAR RARARANAN.
L T IL I _.___J_H_H_LJLUL\LUUJ_JL!_U NN NN N NS0

ED svsonmn RS (R e
s (NN GGG DD

* SPL: MOSI data

* SPL: MOSI bits
Not on PulseView: SPI decoder uses VDD as CS (Active high). This will reset the bitcount when the MCU is reset and ensures proper decoding for magic word
Analog signal were converted to logic by using a threshold of 1.8V (3.3V logic) to also capture the regions with Vdd=2V

OxA5A5A5A6 key/command - read

+14v06|80 ps +14,0(190 ps +14v07|’00 ps +14v07|’10 ps +14,07|rzg ps +14v07|’30 ps +14{)7|’4{) ps +14v07|’50 ps +14v07|’60 ps +14,07|70 ps +14v07|’80 ps +14,07|90 ps
1T 7 NN
MOSI
L v/div
MISO pulled low by MCU after cycle 31
---------------- MISO flo //
MISO \
2 \/div
VDD
2 Vfdiv
A AR AAAAl AAAAAAAAR AAAARAAAA AHAHHHH [seaenceisszodesintoral

L OO T T T LTI

HNNNENE e

ED svsoe QI (I (D) (e

¥ SPI: MISO bits
» SPI: MOSI data
¥ SPI: MOSI bits

Command / Entry key encoding

The entry key is 32 bit and is sent by the master directly after entering programming mode.

A6 key: OXA5A5A5A6 -> |nitiate reading
A7 key: OXA5A5A5A7 -> |nitiate writing

No other codes were found.

The slave (MCU) pulls MISO down after clock 31. The pin floats before, which could suggest that the

programming logic is activated after 31 clocks. This may also suggest that only the LSB is actually used
for commands.

Phase 0 — Check device ID - Key-A7, Vdd=4 V, Vpp=7.5V

+327640 p= 03‘.‘75'00 7] -32/8]80 Hs 03279|00 us >’J‘2/9?0 us +327540 ps »3279|oo s *32)9|!0 [7.3 6328(700 us ~3280|20 = ~3210|10 W
ey 1 O o N o) Y (s O oo NN 1, NN s [7, S () [o I o O o)
1 1 7 B !
Voo 2
wrp O O N O ;.;“!ii.'.ll.“..'.l“.,l_“”;'.li!...'.L;.)K!..il.lul.‘.‘l,l‘ I = - IR —
B oo e os e oG s S Cae e) S) GG e a e et M)
e (0080000400 (B8008-8 (008D (000000 0000000 @-00e-0000 90-6-0-9-600-050-040 808880 <000
verimnsioens (e e L ey G ey e e o e A T e
vt mosines CRM0A0 00 (R0 (AR) Qe @ @eeheeeeeuseeeen s eesesaeee s e e e
N v)\ v "\ . Y
32 bits magic key Master sends 26 Bits ,,0” Master sends 12 bit ,0“
=> 2x13 bit empty data word => Adress 0x000
Slave sends 12 bit response
0b010100001011

= Cycle 0 is basically an incomplete write of 0x0000/0x0000 to 0x000. The last clock cycle is omitted
to prevent the dummy data from actually being written.
The device ID is clocked out of MISO during the adress phase of the write.

® |n principle, the device ID could also be read during a read phase.
= Sequence is identical for both previously programmed and clean device (logs 2 and 4)

= |dcode is updated on falling edge! Delay 240-320ns.

= 0Ox50B device ID

Not that this is one clockcycle less
than a write-operation. Hence the
write operation is not started.

Read sequence

+173950 ys
] |]]

+173960 ps +173970 ps +173980 ys +173990 ps +174000 ps +174010 ps +174020 ps +174030 ps +174040 ps +1740%0 ps +174060 g +174070 ys | +174080 ps +174090 ps +174100 ys
'SR I (G D TR R A SR DU SN Rl (G RN SN SO GUCK! (KON RN N SORUS A SR GRS IS BRE B JRCNY TS B SR St B B SN Y R JRER SR SR SN TR CCEES R MR AR GRRSH MNNES JHNEY O SN GO (R TS GO GO DA RRAS BT T SR R G S (R RN S T G S N S Dol [|

1
MISO updated on faIIinq edge for all other cycles
Att:MISO updated on rising edge for first clk! \ X

4 Important !

> Note extended clk
/ This bit was incorrectly decoded, should be 1 e
AR R ST KA S o R W AT e AR e e ARTORKS 8. 2031 _'_‘__’_'%_'_; """""""""" vA AI """""""""" o R A R R R A e A L AT SR 554 S Y R AT R _"_ IO LR " AT R CRRK
iAo A[fA[] IEl=i==—l =0 =0 =0=0=0=8 S Y o O 0
SPL: MISO data {0 [i 2 @ FF))
» SPI: MISO bits
» SFI: MOSI data
» SFT: MOST bits
N J J I\ y
] Y Y Y
12 bits adress 13 bits data Start of next address
Sent by master on MOSI Sent by MCU

= Read sequence is straight forward:

Master sends 12 bit adress, slave sends 13 bits of data in subsequent cycles.

= There is one apparent oddity:
Usually the data on MISO is always updated on the falling clk cycle. However, the MSB of the data is updated with a delay of
half a clock cycle, on the rising edge of the clock.

= =>For the MSB, it is therefore necessary to set clk high and read MISO after ~2us before setting clk low again.

= What is the reason for this behavior? No idea, it could be remnant of a direction switching sequence for a bidirectional port.

Another example of MISO MSB exception during the read sequence.

] clock edge due to previously
/ mentioned exception.

CERE Sl S

EREEETE

Phase 1 — overview — Read 0x3F0-Ox3FF (system area)

Y1700 ps *174000 5 L4100 ps 274200 us *174300 5 14800 5 L4500 ps *174600 45 SN0 s 174000 ps 174000 5 *175000 45 *175100 = 175200 g5 175300 45 *175200 j5 +175500 g5 175600 35 175000 5 +175800 p& *175600 g5
| ' |) ' ' | | ' I v | | ' | | | | | ' | | | ' |

Thed elDis I kd uto MISOd ing the second a d ss phas f ach read cycle.
This Irlh ed.i ad of an aborted write sequence to ead the rl 1D

“WW"’" “'f"' Lo i

= The MCU seems to send out information during adress cycles as well:
= During the second adress cycle the device ID is sent.

= Qccasionally the MSB is set on MISO in subsequent adress cycles. Glitch? Parity information?

Write Sequence Part |

0371'370 ps ’371:}@ s ’37l3|90 s ’37!4'W us '3714]]0 us '3714|20 s 3714'30 ys ’371f40 ps *3714]50 ps ‘3714160 s '3714|70 s '3714]@ ys '371190 us +371500 ps '3715'10 ps '3715]20
m J i | j ' J l L l {
- mln 0 = |
—_—— e ot tadeealeeye —
ey
. ol
|)]] M 3 & | m
H | R H | [| | ‘ 1 11
- P I AAAAAARAARA AAAAAAAARAAAAR AAAN il
—‘._._.‘.._.._._._._.4‘_..___._._..{_._._.._,__.__.._._.____‘;.._..._..._..___.‘._._._J___._ﬂ_ 10\
SPL: MISO data- 00 D 0 ¥ 00 2.4 28
¥ SPL: MISO bits
» SPL: MOSI data
» SPL: MOSI bits
A Y /N v J g
13 bits instruction word 0 13 bits instruction word 1 12 bits adress (even!) 1x‘0* padding
Sent by master on MOSI Sent by master on MOSI Sent by master on MOSI

. . Stretched clock cycle
= The PMS150C seems to write two words of memory per write cycle. -> write takes place here

= Each write cycle consists of the the following initiation sequence:

= Send 2x 13 bit instruction words

= Send 12 bit adress word. (Needs to be dividable by two ?).
= Send a single ,,0“ bit. The write cycle seems to be aborted if the device is powered down before sending this bit.

= The next low-> high transition of the clk seems to initiate the write.

Write Sequence Part Il

+371350 5 +371400 is +371450 pis

+371500 13
IV (e 107 RSN Y WY (i Bl O N

l 1] | ’
\ ' 1

+371550 s

Ilimmila 62us rép

'

+371600 ps +371650 ys *371700 ps +37L750 s
|

+371800 ps
RUR ORI I e Yot P W WO TEIOY YOO Bl oy (Y Y 1

ated 8 times

B ser: MO data
» 5P M1SO bits
* SPI: MOS] data

» SPL: MOST bits

Stretched clockcycle 497ps

371850 s +371900 s +3719%0 s +372000 ps +372050 5 +372100 s +37215
| TS I | 1 A ln X - 1334 ||v|
i
Lo/
10 v/d
> AR AASREAERLIIL AARRRLILA

Write initiation
words 0/1

Y
Write execution

= The write execution cycles takes approximately 500us.

Write initiation
words 2/3

= The last clockcycle of the write initiation sequence is stretched during the write execution sequence.
The SCLK H->L transition preceeds the next write initiation cycle.

= |t appears a secondary clock signal of 16kHz is provided on MOSI. Very odd.

Write Sequence Part Il — full sequence overview of phase 5

H65200 us ‘4654(0 3 0 us 4465800 ps 466000 us 6200 us '46!14(0 ;.3 ‘466600 us ‘467000 ps 4467200 s 467400 p=
' | | < | ' | | | \ | ! ' | | | | | ' | | |
|
.'.,,.,f 0 I A I Y 4
| |
i
JEE 10N dee
[m W e
UCcVvILC TU -—
10 V/die
=3
|I||I“|| LI m B
Il
9z IO * X000

srr miso dox — HHGOO

*» SPE: MISO bs

s mosiane DOOO

* SPL MOSI bs

= The last write execution cycle simply ends with the H->L transition of SCLK.

= The MCU will also output data on MISO during the write initiation cycle.

= First adress cycle: The device ID is clocked out.

= Subsequent cycles: The data and adress words of the previous cycle are repeated.
This may be a feature to verify the correctness of the written data without a separate read phase. However, it seems

that the current software is not making use of it since the information of the last write cycle is discarded.

Revisions

= V0.1 -Jan 7th, 2019 — cpldcpu. Initial report.
= VO.11 - Jan 7th, 2019 — cpldcpu. Updated up clean room disclaimer and front matter.

