SENTINELs worrro

SentinelSuperPro

Programmer’s Reference Guide

@RAINBOW

TECHNOLOGIES

Copyright © 1991-1999, Rainbow Technologies, Inc.
All Rights Reserved

All attempts have been made to make the information in this document complete and accurate.
Rainbow Technologies, Inc. is not responsible for any direct or indirect damages or loss of business
resulting from inaccuracies or omissions. The specifications contained in this document are subject to
change without notice.

Sentinel SuperPro™ and SentinelWizard™ are trademarks of Rainbow Technologies, Inc. IBM® and
AT® areregistered trademarks, and OS/2™ is a trademark, of International Business Machines, Inc.
Microsoft Windows 95™, Microsoft Windows 98™, Microsoft Windows NT™, and Win32s™ are
trademarks of Microsoft Corporation. All other product names referenced herein are trademarks or
registered trademarks of their respective manufacturers.

CONFIDENTIAL INFORMATION

The Sentinel SuperPro security system is designed to protect your software products
from unauthorized use. The less information that unauthorized people have
regarding your security system, the greater your protection. It isin your best interest
to protect the information herein from access by unauthorized individuals. Please
read the Developer’s Agreement at the beginning of this document for safeguarding
reguirements.

Part Number 700496-001 Revision A
Software Releases SP-5.1 and later
System Driver Releases PD-5.36 and later
INTERNET: //www.rainbow.com
RAINBOW TECHNOLOGIES, INC.
50 Technology Drive, Irvine, CA 92618
TEL: (949) 450-7300, (800) 852-8569 Fax: (949) 450-7450

RAINBOW TECHNOLOGIES LTD.
4 The Forum, Hanworth Lane, Chertsey, Surrey KT16 9JX, United Kingdom
TEL: (44) 1 932 579200 Fax: (44) 1 932 570743

RAINBOW MICROPHAR
122, Avenue Charles de Gaulle, 92522 Neuilly-sur-Seine Cedex, France
TEL: (33) 1414329 00 Fax: (33) 146 24 76 91

RAINBOW TECHNOLOGIES GMBH

Lise Meitner Strasse 1, 85716 Unterschleissheim, Germany
TEL: (49) 893217980 Fax: (49) 89 32 17 98 50

SentinelSuperPro Programmer’s Reference

SOFTWARE LICENSE AND DEVELOPER'SAGREEMENT

All Products (including developer’ s kits, Sentinel hardware keys, diskettes or other magnetic media,
software, documentation and all future orders) are subject to the terms stated below. If you disagree
with these terms, please return the Product and the documentation to Rainbow, postage prepaid, within
three days of your receipt, and Rainbow will provide you with arefund, less freight and normal
handling charges.

1

Y ou may not copy or reproduce all or any part of the Product, except as authorized in item 2
below. Removal, emulation or reverse-engineering of all or any part of the Product constitutes an
unauthorized modification to the Product and is specifically prohibited. Nothing in this license
permits you to derive the source code of the software files that Rainbow has provided to you.

Y our software programs must be protected or licensed using a licensed and registered copy of this
Rainbow Product. Rainbow provides no other warranty to any person, other than the Limited
Warranty provided to the original purchaser of this Product.

a. You may make archival copies of the software files and you may maodify and merge them into
your software programs for the sole purpose of implementing the Product to protect and/or
license your programs according to the Rainbow documentation provided with the Product. All
software files remain Rainbow’ s exclusive property.

b. Rainbow’s Sentinel System Driver Software and other Rainbow software files listed in the
“Licensee Redistribution Allowances’ section (if it is defined in the Product’ s documentation)
may be copied and distributed to your customers for the sole purpose of executing your protected
or licensed software programs according to the Rainbow documentation provided with the
Product.

c. Nolicenseisgranted to Licenseeto sell, license, distribute, market or otherwise dispose of
any software files or other component of the Product except when embedded in your software
programs. Copies of your software programs must bear a valid copyright notice and must be
distributed such that the object code for the Product cannot be extracted.

Rainbow warrants the Product and the magnetic media on which the software files are provided
to be substantially free from significant defects in materials and workmanship under normal use
for aperiod of twelve (12) months from the date of delivery of the Product to you. In the event of
aclaim under this warranty, Rainbow’ s sole obligation is to replace or repair, at Rainbow’s
option, any Product free of charge. Any replaced parts shall become Rainbow’s property.

Warranty claims must be made in writing during the warranty period and within seven (7) days
of the observation of the defect, accompanied by evidence satisfactory to Rainbow. Prior to
returning any Product to Rainbow, you must obtain a Return Merchandise Authorization (RMA)
number and shipping instruction from Rainbow. Products returned to Rainbow shall be shipped
with freight and insurance paid.

SentinelSuperPro Programmer's Reference

5. Except as stated above, thereisNO OTHER WARRANTY, REPRESENTATION, OR
CONDITION REGARDING RAINBOW’S PRODUCTS, SERVICES, OR PERFORMANCE,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Rainbow is not responsible for any delays beyond its control. Rainbow’ s entire liability for damages to
you or any other party for any cause whatsoever, whether in contract or in tort, including negligence,
shall not exceed the price you paid for the unit of Product that caused the damages or that are the
subject matter of, or are directly related to, the cause of action. In no event will Rainbow be liable for
any damages caused by your failure to perform your obligations, or for any loss of data, profits,
savings, or any other consequential and incidental damages, or for any claims by you based on any
third-party claim.

Licensee Redistribution Allowances

The Sentinel SuperPro Licensees may release the Sentinel System Driver diskette for installation with
their Sentinel-protected application.

iv SentinelSuperPro Programmer’s Reference

FCC Notice To USERS

This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to Part 15 of the FCC Rules. Operation is subject to the following conditions: (1) this device
may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

This equipment generates, uses, and can radiate frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications. However,
there is no guarantee that interference will not occur in a particular installation.

If interference problems do occur, please consult the system equipment owner’s manual for
suggestions. Some of these suggestions include rel ocation of the computer system away from the
television or radio, or placing the computer AC power connection on a different circuit or outlet.

Change or modifications to this product without the express approval of Rainbow Technologies, Inc.,
could result in non-FCC compliance, and void the user’ s authority to operate this equipment.

International Quality Standard Certification
Rainbow Technologies, Inc. Irvine CA facility has been issued the ISO
9002 Certification, the globally recognized standard for quality, by
L British Standards Institution as of December 1994,

Certificate Number FM 30128

European Community Directive Conformance Statement

This product is in conformity with the protection requirements of EC Council
Directive 89/336/EEC. Conformity is declared to the following applicable
standards for electro-magnetic compatibility immunity and susceptibility;
CISPR22 and IEC801. This product satisfies the CLASS B limits of EN 55022.

SentinelSuperPro Programmer’s Reference

Vi

SentinelSuperPro Programmer’s Reference

Table of Contents

TABLE OF CONTENTS ..ttt ittt ettt ettt e e VI
ADOUL TRISMBNUEL ... e Xi
About the DeVEIOPEr' S GUITEoooeiee ettt Xi
Conventions Used iN thiS MaNUALooouiiiieiiiiieiesee e Xii
Additional Sources of INFOMEBEION..........coouieiierieee e Xii

CHAPTER 1 - INTRODUCTION TO THE SENTINELSUPERPROccoiiiiiiieeeeeeeeeeeee e 1
SYSLEM COMPONENES.......eeeee ettt ettt e e e ettt e e rabe e e e e aabee e e s abee e e s anbeeesaanbeeaesaneeeananns 1
Language/Operating SySteM SUPPOMTooiueeieerieeieesiee e e e re e nne e 2

CHAPTER 2 - FEATURE OVERVIEW ...ttt 3
ProteCtion frOM PITACYcoiiee ettt et st eeeneeeennes 3
Flexible ProgramiMing...........c.coo et ste e e snee e snee e smeeeeeneeeennes 4
PESSIWOIT PrOECHION........ceiiieiie ettt ne e nnneen 4
F N Lo o gL a0 N w1 Y= o] o S 5
DemO Program CONIOLc..eoiieieeiie e ne e nnne e 6
Reprogramming CellSinthe Fieldo 6
Multiple Applications Sharing ONEKEYc.coiiiiiiiiieiiee e 7
DIIVESr ENCIYPHON ...ttt n e nan e n e e e e nnneens 7
Enhanced AlgOrithm ENQINE.........coo it 8

CHAPTER 3 - PROGRAMMABLE MEMORY ...t 9
Overview and TEMUNOIOGYeeeeueeeeieeeiiieeiieeeeeeeseeeseteeeseeeeseeeesneeessneeeanseeeanreeeaneeesnneens 9
RESITCLEA CIIS......eeeeeieee e 10
ACCESS COUBS.......ccuveeiee ettt ettt e b s an e e bt e e ne e s st e b e e s beenan e e ne e e 11
ClIL VAIUBS......coeee et n e en e nnnenane e 12
L0 | I3/ 0= SR 12

Skl (110 = 11170) RO 14
AA (Active AlGONTNMY) ... e 14
F N o T To 11 0 T =) S 15
AP (Algorithm PassWord)c.coeiiee et 15

SentinelSuperPro Programmer’s Reference vii

CA (Algorithm Counter WOr).........ccueieieiieiie e 16

CW (COUNLEN WOTT) ...ttt 17
DRIV Lo ol g 1) TS 17
DL (Locked Data Word)ccceereieieenieesreeieesiee st 18
DW (DA WOI).....cueeiieeiiee ettt ne s 18
A (Inactive AlQONTRM) ... e e 18
OP (OVErWIIte PassWOrd)coooieeiieeeiieeeiiee e e et e e e e s smee e e eneeesneens 19
RW (RESEIVEA WOIM) ...ttt e e ennee e e 19
SN (Serial NUMDED) ... e 20
WP (WIit€ PaSSWOIM)ceieieeiiie ettt e et e e e snte e e nnee e 20
Specia Rulesfor Algorithm ValUES............ooi it 21
Valid Addresses for AlgONTMS.........ooiiiiiiiee e 22
CHAPTER 4 - AP CALLS ...ttt ettt e e e e e e e e e e anannee s 27
SUMMENY OF APl FUNCLIONS.coiiiiiieiie et 27
SPrOACHVAIEAIGOITENM() ... e 29
SPFODECTEMENT() .. eveeeeee ettt ettt ettt b e e e r e s se e san e e e e nseenan e e neenneenaneennees 29
SPrOEXIENAEAREAA() ..ottt 30
SPPOFINAFTTSIUNIT() «. et 31
SPrOFINANEXTUNIT() ...ttt 32
sproFormatPacket() (Win 32 and OS2 ONlY)ooviiiieiiiiieeeeee e 32
SPFOGELV EFSION() .ottt ettt s e s e e e e nan e e n e nne e e ne s 33
S0 (0] LTl 1F= 7<= (TSP OPR PR 33
SPTOOVEIWVIITE() ...ttt ettt e et s e s e e nne e nan e e n e e nnn e naneenees 34
S 01010 U= oY/ I TP SPR 35
S 010 {=""o | TP PR PR 36
S 01001V (=) TP OPR PR 36
CHAPTER 5 - USING THE ADVANCED EDITORuuuiiiiiiiiiiiiiiiiiiiiiiiiiininnineiinineeeeeeennnennes 39
Entering and Leaving the Advanced EditOrcooviiiieiiiiieiieeeereee e 39
TRE KEY IMBLIIX ..ttt ettt ettt e ettt e s e e e ne e e smte e e sneeeeneeesmteeenneeeennes 40
ChoosiNg HEX OF DECIMAELc.eiiiiiiieiee et 40
HOW CellS CaN BE USEM........coiiiiieiecee e 40
Programming CalISottt e e neeeens 41
L0107 0] 0T = KO 42
ClEANMNG CIIS.... et r e nare e 43
Updating the ABCNEA KEYoooiieiieeeee e e 43
Querying the AttaChed KeYooo i e 44

Viii SentinelSuperPro Programmer’s Reference

USING Other APL CallS... .ottt e sneeeenneeeens 44

CHAPTER 6 - USING THE DRIVER ENCRYPTION TOOLS......coiiiiiiiiiieeeeeeaiiiieeeee e e e e 47
Using Driver Encryption with Windows AppliCationsS...........cooooeeeiiiricir e 48
The Driver ENCIYPLioN PrOCESS.cii e eiee e e see et e e este e sneeesnneeesneeeesneeeenees 48
Available ENCryption MEthOOSooiiiiriiieee e e 49
Running SPROX from the Command Line..........ccooeiiiiiiiiei e 50
SUMMENY Of ParaMELENS......cueiiiiiiieiee e 51
Command-Ling EXAMPIES.........eoeiie et 53
Running SPROX INEIBCHIVELYooieieie et 53
Encrypting and Decrypting from Your AppliCation...........cccoeeviiriiiiieniceecsee e 55
Encryption and DeCryption ROULINEScouiriieiienieeieesee e 56
CheCKSUM ROULINE.........ciiiiiiie it n e nene e 57
CHAPTER 7 - ADVANCED PROTECTION TECHNIQUEScceiiiiiiiiiiiieeeeeeeaiiiiieeeeeee e 59
ADOUL the EXAMPIES. ... et ne 60
BaSIC GUIAEIINES.......c.eiiieeiee et 60
REAAING SLOrEU DALA........eeveeeieeeieeiie et 61
Using Algorithms to SCramble Data............ccveiiieiiienieieeece e 62
Using a Scrambled Value to ENCrypt COUE..........ooiuieiieiiieieiee e 63
Using Returned Values as VariableS.........cooeiiiiiiiiie e 64
Controlling DEmMO APPHICALIONSccuviieeiiieiiesie ettt nane e 65
USiNG ACHIVELION PESSIWOITS.eeeiiiieiiie e eee ettt ee e et e e s e e sneeeenneeeans 67
Querying ACtiVation PaSSWOITS...........coiuiiiieiieiie et 69
Using One Key for Multiple APPlICELIONS............ooiieiieiieeeesie e 70
ODSIrUCHING DEDUGGEN'S - ceeee ettt eee ettt e et e e et e e saeeeeeneeesnee e sneeeenneeeennes 71
Assembler Language TEChNIQUES........c..eiiiieiieiieeie e 71
L L0 10T I S 71
INSErtiNG EXIFADE@IAL ... eeeeee et 72
ENCryption TECANIGUES......coiuiie ettt e et e et e smeeeesne e e sneeesneeeenneeeans 72
Using Returned Values as ENCryption SEEAS...........coiviriieerienieeeesee e 73
Using Longer ENCryption SEEOS..........oouiiiieiiiiieesiee e 74
Using Advanced Encryption TECHNIQUES.coeiiireiieeeieeeeieeeseeeeiee e 74
Additional Strategies USiNg Data WOITS..........c.c.oiieeriirieiieeseesieeee e 75
USING SEEPPEA ACCESS.......eeuveerieieteesiee et ettt st b e sse e st e b e e s s e ssn e e aneesnnesaneenneennes 76
QUENYING COUNLEr WOITSeeieieiieetieeiee ettt e e nnne e 76
If the Hardware Key ISNOt AttaChedcooiiiiie e 77

APPENDIX A - APl STATUS CODES ...ccittiiiiiiiiiiiiiiiiiieeie ettt ettt ettt 78

SentinelSuperPro Programmer’s Reference iX

APPENDIX B - SPROX ERROR MESSAGESuuiiiiiitiiaieiii e eeiii e e et e e eeii e e eeaia e aees 82

APPENDIX C. PROGRAMMING WORKSHEET ... cccuiieiiiieieieeeieeeeieeeeeeaneeeaneeeaneeeaneeeeen 87
APPENDIX D - QUICK REFERENCE TABLESuiiitiiiiiiieieeeeie e et ee e e e e e e e eaa e e e e eean 90
1T =5 96

X SentinelSuperPro Programmer’s Reference

About This Manual

This manua explains how to protect an application with the Sentinel SuperPro software
protection system. It covers the following topics:

- How Sentinel SuperPro memory cells can be programmed.

- The client interface routines used to communicate with the Sentinel SuperPro.

- How to use the SentinelWizard's Advanced Editor.

- The techniques used to protect linked-in drivers with encryption when not in use.

- Genera techniques for protecting an application, with examples that demonstrate how to
implement common protection strategies.

- Error codes.

- Quick reference charts you may find helpful when planning your protection strategy and
programming your keys.

About the Developer’'s Guide

Please refer to the Sentinel Super Pro Developer’ s Guide for the following topics:

- Installing the Sentinel SuperPro software.

- Attaching the hardware key.

- Running the Sentinel Wizard.

- Running the Sentinel Shell.

- Protecting and running your application.

- Choosing the correct driver.

- Troubleshooting, problem reporting, shipping, and handling.
- Glossary of terms.

SentinelSuperPro Programmer's Reference Xi

Conventions Used in this manual

The following documentation conventions are used in this manual:
Hexadecimal values

Unless otherwise noted, all values are expressed in hexadecimal format.
Modulo operations

The syntax “n MOD m” is used to indicate any number that produces n as a remainder
when divided by m. For example, 3 MOD 8 represents any number that, when divided by 8,
yields aremainder of 3. Therefore, 3 MOD 8 represents the hex numbers 3, 0B, 13, 1B, 23,
2B, and so on.

Additional Sources of Information

Every Sentinel SuperPro security system includes README files. These files contain the
latest information on the system.

See the Sentinel SuperPro Developer’s Guide for a complete list of Technical Support
Sservices.

Xii SentinelSuperPro Programmer’s Reference

Chapter 1 - Introduction to the
SentinelSuperPro

The Sentinel SuperPro is a hardware/software protection system that secures applications
from unauthorized use. If the correct hardware key is not attached to the computer, the
protected application is not fully functional. Therefore, only legitimate customers can use
your product.

To implement a protection scheme, you program your application to send callsto the
hardware key to verify its presence. The frequency of these calls, and the action taken if no
key isfound, are left to your discretion.

Sentinel SuperPro keys are customized for each developer. Therefore, other developers
cannot reprogram your protected application’s key. Also, possession of one developer’s key
does not alow a user to run ancther developer’s protected application.

Once installed, the Sentinel SuperPro is a transparent part of your software package. No
additiona action isrequired of the user.

System Components

The Sentinel SuperPro system consists of three major components:

- The hardwar e key is a programmable, read/write memory device that providesthe
responses required to unlock your application. Each key contains 64 memory cells, 56 of
which are programmable. Memory cells can be programmed with data values to provide
fixed responses or serve as counters. Each key aso contains internal logic that
transforms data based on encryption strings you define.

- The Application Program Interface (APl) is a set of functions used to access the
Sentinel SuperPro security system. The APl manages the communication between your
application, the Sentinel SuperPro driver, and the hardware key.

SentinelSuperPro Programmer's Reference 1

Language/Operating System Support

- The SentinelWizard, a Windows utility, lets you program the hardware key’s memory
cells. These programmed cells provide the values your application uses to determine
whether or not the key is attached to the PC. The SentinelWizard also generates pseudo-
code you can use to add API calsto your application.

Language/Operating System Support

Thelist of languages and compilers supported by the Sentinel SuperPro system changes
frequently. For the most current list, see the README file or the Rainbow Technologies
homepage on the Internet (//mwww.rainbow.com).

Support is provided for applications running in avariety of operating systems (including
DOS, Windows 3.x, Windows 95/98, Windows NT, and OS/2) on a wide range of
hardware platforms (including Intel, DEC Alpha, Power PC, NEC, and FMR).

To support applications running under various operating environments, Rainbow provides
driver software that can be configured at installation time. For example, a DOS application
may be used by your customer in a Windows or Windows NT DOS box. The driver
software can be incorporated into your installation program to provide consolidated
support.

2 Chapter 1 - Introduction to the SentinelSuperPro

Chapter 2 - Feature Overview

The Sentinel SuperPro protection system provides the following major features:

- The ahility to protect your application from unauthorized use through software locks.

- The ability to program asingle key in avariety of different ways to meet the needs of
your application.

- A two-level password protection scheme that secures the programming process.
- A meansfor the end user to activate an inactive application in the field.

- A meansto control the execution of demos and trial purchases.

- The ability to reprogram memory cellsin the field.

- The ability to use one key to protect more than one application.

- The ability to encrypt the driver so that it is effectively “hidden” between callsto the
hardware key.

- An enhanced agorithm engine option for increased protection.

These features are described in detail in this chapter. Instructions for implementing each
feature are provided in later chapters of this book.

Protection from Piracy

To use the Sentinel SuperPro to protect your program from piracy, you insert a series of
“software locks’ into your application. Each lock isacall to a Sentinel SuperPro API
routine, and requires the presence of the hardware key in order to succeed. If the key is
missing, an error code is returned to your program so the unauthorized copy will know to
terminate. Software can be copied illegaly, but pirated software will not run.

SentinelSuperPro Programmer's Reference 3

Flexible Programming

Flexible Programming

A primary advantage of the Sentinel SuperPro system is that one key can be programmed to
provide many diverse types of both fixed and variable responses. This gives you
tremendous variations in the types of software locks you can create.

For example, cells can be used to store fixed data such as seria numbers, user names, or
codes that control feature access. Such data can be read to smply verify that the key is still
attached. You can aso use stored data to control program flow or application functions.
Data words can be defined as read-only (locked) or read/write.

Cdlls can aso store encryption strings (called * a gorithm descriptors’) that are used to
scramble input strings sent by your application. Other cells can be programmed as counters
used to restrict the number of executions.

Thefirst eight cellsin each key are reserved for system information. With some restrictions,
the other 56 cells can be used in any way you desire.

Password Protection

The ability to program Sentinel SuperPro units is protected by two passwords:

- Your write password lets you write to undefined cells and read/write data words.

- Your overwrite password lets you write to al other non-restricted cells: read-only data
words, counters, and agorithm words.

Cdlls 0 through 7 are restricted and cannot be reprogrammed, even with the overwrite
password.

Y ou must have your passwords in order to program keys with the Sentinel Wizard. Y ou
must also include the passwords in your protected application to reprogram cellsin the
field. (The passwords are required parameters for some API calls.)

The overwrite password is extremely powerful and should be guarded carefully. It is
recommended that you do not compromise the password by using it in your released
application. To avoid doing so, design your protection scheme so that cells that require this
password are set at the factory and do not change in the field.

4 Chapter 2 - Feature Overview

Algorithm Activation

Note: If your protection scheme does not require the overwrite password from your
application, Rainbow can program each of your keys with a*random overwrite
password.” Each key will contain a different overwrite key password and can not
be changed in the field.

Algorithm Activation

Algorithm activation is a protection technique you can use to ensure that only legitimate
users can use your application. Basically, you ship your application in an unusable state,
and provide a mechanism for legitimate purchasers to activate it.

To use this technique, you define an algorithm in your hardware key as “inactive.” This
makes it unavailable for queries, which means that a query sent from your application
receives an invalid response. (A “query” isan API call in which your application sends a
data string, the string is scrambled according to the key’ sinternal logic and an algorithm
descriptor, and the scrambled string is returned to your application.)

To activate an inactive agorithm, the customer must enter a password you have previoudy
defined. If you are using the Sentinel SuperPro Manufacturing Utility, the utility will create
the password for you. The USAFE activation utility can then be run by the end user and in
conjunction with DSAFE, the password will be re-created and used to activate the product.

Generdly, there are two situations in which you might want to use algorithm activation:

- You set the algorithm descriptor to “inactive” at your factory. The user must contact you
for the correct algorithm password in order to run the program for the first time. If you
use one key to protect multiple applications, you would issue the password that activates
the program the customer purchased.

- You set the algorithm descriptor to “active” at your factory, and define an associated
counter. Y our application decrements the counter each time it runs. Once the counter
reaches 0O, the algorithm descriptor becomes inactive, causing further queriesto fail. The
user must contact you for the algorithm password to use the application again.

SentinelSuperPro Programmer's Reference 5

Demo Program Control

Demo Program Control

Y ou can program the Sentinel SuperPro to count the number of times a program is
executed. Thisis especially useful for demonstration software.

To count executions, you program amemory cell as a counter, and set the initial value.
Each time the application is executed, it decrements the counter by 1. When the counter
reaches O, you code your application to prevent it from running again.

The usual way in which demo control is performed is by linking the counter cell to an
algorithm descriptor that is used in queries. When the counter reaches 0, the algorithm is
deactivated automatically. Subsequent queries return incorrect response values. Y ou code
your agpplication to stop running if an incorrect value is returned.

If you use the Sentinel Shell system to protect your software, you can aso limit demo
programs by time and number of days. For example, your application can be enabled for a
period of 30 days. For details on the Sentinel Shell, see the Sentinel SuperPro Developer’s
Guide.

The counter/algorithm combination may also be linked to a password. If the customer
purchases an extension of the software, you provide him or her with the activation
password. Let the SuperPro Manufacturing Utility create the password originaly, use
USAFE/DSAFE to recreate the password and then activate the product in the field.

Reprogramming Cells in the Field

Of specia significance isthe option for your protected application to dynamically
reprogram the Sentinel SuperPro in the field. For example, you can write installation
programs that ask the user for values such as passwords. The entered values are then
written to the hardware key and can be used in later software locks.

For added security when reprogramming keys in the field, use the Sentinel SuperPro in
conjunction with Rainbow’ s Sentinel SAFE system. For more information about the
Sentinel SAFE, contact your sales representative.

6 Chapter 2 - Feature Overview

Multiple Applications Sharing One Key

Multiple Applications Sharing One Key

More than one application can use the same hardware key for protection. Usually, thisis
implemented by assigning certain cellsto each application. This gives each application its
own agorithm descriptor(s) to use for software locks.

Customers who run several of your applications on the same computer need to attach only

one key to protect them all. This saves space and improves the PC’ s appearance in the
customer’swork area

See Using One Key for Multiple Applicationsin Chapter 7 for a sample programming
layout in which seven programs share a single key.

Driver Encryption

For an extralevel of protection against potential hackers, the Sentinel SuperPro linked-in
driver file can be encrypted when it isnot in use. This process alows your program to have
an “invisible’ copy of the driver on disk and in memory until the driver code is actualy
utilized.

Y ou can customize the encryption process by choosing various parameters, such as which
encryption method to use and which part of the driver isto be encrypted. Y ou link your
application to the encrypted driver file, then call routines from within your application to
decrypt the driver before communicating with the hardware key. Optionaly, the driver can
be re-encrypted between calls.

By linking an encrypted version of the Sentinel SuperPro driver into your program, you get
the benefit of a“drop in” driver for communicating with the hardware key. Also, the driver
code in your application program becomes extremely difficult for a hacker to interpret.

Note: Driver encryption is available for linked-in drivers only. It is not supported for
system driversor DLLSs.

SentinelSuperPro Programmer's Reference 7

Enhanced Algorithm Engine

Enhanced Algorithm Engine

Y ou can choose the type of protection used for each agorithm: the original algorithm
engine for normal protection, or the enhanced engine, the most powerful form of protection.
When you program keys with the SentinelWizard, you can easily activate the enhanced
algorithm engine.

The enhanced engine requires the latest model of the Sentinel SuperPro.

Note: For maximum security, use of the enhanced agorithm engine is recommended for
all algorithms.

8 Chapter 2 - Feature Overview

Chapter 3 - Programmable Memory

Every Sentinel SuperPro key contains 128 bytes of memory organized as 64 words of 16
bits each. The words (cells) are addressed as locations O through 3F hex, and can be
addressed randomly to provide the responses required by your software. Cells 0 through 7
in each key are restricted. Y ou can program cells 8 through 3F hex.

When you program a cell, you assign it various attributes. These attributes determine how
the cell can be used by your application.

The information in this chapter provides a basis for understanding how the
Sentinel SuperPro key can be used. Y ou should read this chapter before programming the
key, and should refer to it when designing your protection strategy.

Overview and Terminology

Each cell you program can be one of the following genera types:

- A dataword can store data such as customer information, serial numbers, passwords,
and check digits. Y ou code your application to read the cell and evaluate (and act upon)
the stored value. A data word cell can be programmed as read-only or as read/write.

- A counter word contains an initial value you set and your application decrements. A
typical use of acounter isto limit the number of times a demonstration program can be
executed.

- Analgorithm descriptor contains a bit pattern that defines how the hardware key isto
scramble a data string sent by your application. The key uses your algorithm descriptor
plus an internally stored, proprietary agorithm to transform the input string. Y ou design
your application to send data strings to the key and evaluate (and act upon) the values
returned.

All agorithm descriptors are two cells long. Algorithm descriptors may have activation
passwords and deactivation counters associated with them.

SentinelSuperPro Programmer's Reference 9

Restricted Cells

To define how you want to use a particular cell, you assign it a code called a cell type. The
cell type classifies the type of data stored in the cell; this in turn affects how the cell can be
used. Each cell typeisidentified by a two-letter abbreviation. For example, CW identifiesa
counter word. Certain cell types are designed to be used in groups; for example, algorithm
descriptors may have counters and passwords linked to them.

Every cell type has an access code associated with it. This code controls how the cell can
be used by your application (for example, read-only or read/write). Access codes are
numbers from O through 3.

Some cell types have address restrictions. Such cell types can be assigned only to specific
memory cdlls.

In addition to the cell type, you program a cell value into each cell. Each cell can contain a
16-hit hex value (0000 through FFFF).

Algorithm descriptors can be active or inactive. The active/inactive bit in the cell value you
program controls whether or not the algorithm descriptor is active and therefore able to be
used in aquery.

Another bit in the cell value determines whether the enhanced algorithm engineis
activated for this algorithm descriptor.

Restricted Cells

Cdlls 0 through 7 in each key are restricted cells that contain fixed, pre-programmed system
information. These cells are described in Table 3-1.

Table 3-1. Restricted Cells

10 Chapter 3 - Programmable Memory

Access Codes

Cell(s) Contents Readable?
0 Serial number, sequentially assigned per key * | Yes

1 Developer 1D; unique to your company/product | Yes

2 Overwrite password word 1 No

3 Overwrite password word 2 No

4 Write password No

5-7 Reserved for use by Rainbow Technologies No

* Maximum 16-bit value (1 - 65535). Serial number will repeat. If you require
unique serial numbers, please contact your Rainbow representative. Rainbow
must program the keys.

The write and overwrite passwords stored in cells 2, 3, and 4 must be used by your
application to perform certain functions. The passwords are an additional form of
protection against tampering.

Access Codes

Every cell type has an access code. The access code controls how a cell of that type can be
used by your application. For example, some cell types have an access code that permits the
values to be both read and overwritten. Others are read-only, and some are not even
readable.

When you program a cell with the Advanced Editor, you do not assign the access code. The
Wizard determines the access code based on the protection feature you are implementing. If
your application programs or reprograms cells in the field, it must specify the new access
code.

Table 3-2 describes all access codes.

Table 3-2. Access Codes

Code Description

SentinelSuperPro Programmer's Reference 11

Cell Values

Code Description

0 Read/write data word
Y our application can read the cell and, if the write password is supplied,
modify its contents.

1 Read-only (locked) data word
Y our application can read the cell but cannot change it without the overwrite
password.

2 Counter word

The cell contains a value that your application can decrement using the write
password. The cell’ s value cannot be changed (other than by decrementing it)
without the overwrite password.

3 Locked and hidden/algorithm word
Y our application cannot read the cell’ s value. Maodification requires the
overwrite password. The cells are hidden (unreadable).

Cell Values

In general, any cell can contain any hex value from 0000 through FFFF. The only
restriction is that the value in the second word of an algorithm descriptor controls (1)
whether the algorithm is active or inactive, and (2) whether the enhanced agorithm engine
is enabled or disabled. For more information, see Special Rulesfor Algorithm Valuesin
this chapter.

Cell Types

12

Cell types are summarized in Table 3-3 and described in detail on the following pages.
Some of the descriptions refer to API functions; these are described in Chapter 4.

Table 3-3. Cell Types

Chapter 3 - Programmable Memory

Cell Types

Cell Type Access Code Description

> 0 Undefined

AA 3 Active Algorithm
AH 3 Algorithm Half

AP 3 Algorithm Password
CA 2 Algorithm Counter Word
Cw 2 Counter Word

DI 1 Developer ID

DL 1 Locked Data Word
DwW 0 Data Word

A 3 Inactive Algorithm
OP 3 Overwrite Password
RwW 3 Reserved Word

SN 1 Serial Number
WP 3 Write Password

SentinelSuperPro Programmer's Reference

13

Cell Types

** (Undefined)

The Undefined cell typeis used to identify acell that has not yet been programmed or that
is not required in your protection strategy. The Undefined cell typeisidentified by two
asterisks (**).

Note: Cellsyou do not require for your protection strategy can be left undefined.
Alternatively, you may wish to program unused cells as read-only data words or
algorithm/hidden words. This prevents them from being accessed, and also makes
them available if you decide to expand your protection scheme in the future.

Access Code

An Undefined cell has an access code of O (read/write data).
Valid Addresses

Any unrestricted cell (08-3F) can be classified as Undefined.

AA (Active Algorithm)

The Active Algorithm (AA) cell type defines an active (enabled) algorithm descriptor. An
algorithm descriptor consists of two adjacent cells with access codes of 3. The valuesin
these cells affect the way an input string is scrambled via the sproQuery() API function. An
algorithm descriptor must be active in order to be used for a query.

The value in the second AA word must be between 8000 and FFFF. For details, see Special
Rulesfor Algorithm Values.

AA cells can have a password and counter(s) associated with them.
Access Code

An AA cdll type has an access code of 3 (algorithm/hidden).

Valid Addresses

Thefirst AA word must be at an unrestricted, even address (0 MOD 2). Additional
restrictions apply if a counter and/or password is used. For details, see Valid Addresses
for Algorithms.

14 Chapter 3 - Programmable Memory

Cell Types

AH (Algorithm Half)

The Algorithm Half (AH) cell type can be used for each of the two words required for an
algorithm descriptor. The algorithm descriptor created by two AH cellsisbasicaly the
same as that created by two AA or |A cdls. The difference is that you can program the
descriptor in two steps, which may be useful in some protection schemes.

The value in the second AH word must be between 0000 and 7FFF (for an inactive
algorithm) or 8000 and FFFF (for an active algorithm). For more information, see Special
Rulesfor Algorithm Values.

AH cells can have a password and counter(s) associated with them.

Note: Use of the AH cell type requires a thorough understanding of algorithm descriptors.
Consider using the AA and IA cell types instead.

Access Code
The AH cell type has an access code of 3 (algorithm/hidden).
Valid Addresses

An AH cdll can be located in any unrestricted cell (08-3F). Y ou must |eave an adjacent cell
vacant for the other half of the algorithm descriptor. Also, the first AH word of the pair
must be an even-numbered cell.

Additional address restrictions apply if a counter and/or password is used. For details, see
Valid Addressesfor Algorithms.

AP (Algorithm Password)

The Algorithm Password (AP) cell typeis used to “turn on” an inactive algorithm
descriptor so that it can be used for queries. This technique allows activation of an
algorithm descriptor at a customer’s site. For a complete description of this feature, see
Using Activation Passwordsin Chapter 7.

The AP cell type must be two words long and must immediately follow the algorithm
descriptor it activates.

Access Code

SentinelSuperPro Programmer's Reference 15

Cell Types

16

The AP céll type has an access code of 3 (algorithm/hidden). It cannot be directly read or
written to; its value is used only to verify a user-supplied password during execution of the
sproActivateAlgorithm() API function.

Because an AP cell has an access code of 3, it can be used as an agorithm descriptor. See
Querying Activation Passwordsin Chapter 7 for details.

Valid Addresses

The AP cell type must be located immediately after a two-word algorithm descriptor (cell
type AA, AH, or 1A). The two algorithm descriptor words must be at addresses equal to 0
MOD 4 and 1 MOD 4. Therefore, the two AP words must be at locations equal to 2 MOD
4 and 3MOD 4.

Additional restrictions apply if a counter is also associated with the algorithm. For details,
see Valid Addressesfor Algorithms.

CA (Algorithm Counter Word)

The Algorithm Counter Word (CA) cell type defines a counter that deactivates an
associated algorithm descriptor when the counter reaches 0. Y ou program an initial value
into the counter, then decrement it using the sproDecrement() API function.

The CA cdll type must immediately precede the algorithm descriptor it deactivates.

This cell type can be used to control the number of times an application can be executed.
For more information, see Controlling Demo Applicationsin Chapter 7.

Optionally, you can associate two counters (two CA cells) with one agorithm descriptor. In
this case, the first counter to reach O deactivates the algorithm descriptor. If desired, you
could use the second counter after the algorithm is reactivated with a password.

Access Code

The CA cell type has an access code of 2 (counter). It can be read but cannot be written to
except by the sproDecrement() function.

Valid Addresses

A CA cdl isawayslocated immediately before a two-word algorithm descriptor (cell type
AA, AH, or 1A). Thefirst word of this algorithm descriptor must be at alocation equa to 4
MOD 8. Therefore, the CA counter must be located at an address equal to 3 MOD 8.

Chapter 3 - Programmable Memory

Cell Types

If you use two algorithm counters, the first must be at alocation equal to 2 MOD 8, and the
second must be at alocation equal to 3 MOD 8.

For more information on valid algorithm locations, see Valid Addressesfor Algorithms.

CW (Counter Word)

The Counter Word (CW) cell type is used for a counter that is not used to deactivate an
algorithm descriptor. Y ou program an initial value into the counter word, then decrement it
using the sproDecrement() API function. Y ou code your application to check the value in
the counter and proceed accordingly if the value reaches O.

Access Code

The CW cell type has an access code of 2 (counter). It can be read but cannot be written to
except by the sproDecrement() function.

Valid Addresses
A CW word can be located at any unrestricted cell (08-3F).

Note: If you program a counter in an address equal to 3 MOD 8, and you use the next
two cells for an algorithm descriptor, the counter will function as an algorithm
counter. When the counter reaches 0, the algorithm will be deactivated, even if you
did not intend for that to happen.

DI (Developer ID)

The Developer ID (DI) cell typeisused for cell 1 only. Thisis aread-only data word that
contains the unique developer ID assigned to you by Rainbow Technologies or your
distributor. Y ou cannot assign cell type DI to any cell.

Access Code

The DI word has an access code of 1 (locked). Y ou can read the developer ID but cannot
changeit.

Valid Addresses
The only word that can be defined as cell type DI iscell 1.

SentinelSuperPro Programmer's Reference 17

Cell Types

18

DL (Locked Data Word)

The Locked DataWord (DL) cdll typeis used for data words you want your application to
read but not write to.

Access Code

A DL céll has an access code of 1 (locked). After you program the cell, your application
can read it but cannot change it without the overwrite password.

Valid Addresses
A DL cell can be located at any unrestricted address (08-3F).

DW (Data Word)

The Data Word (DW) cell type can store any value you wish to use in your software
protection scheme. This value can be read and/or changed by your application. It can also
be decremented.

Access Code

A DW cdll has an access code of O (read/write). It can be reprogrammed using the write
password.

Valid Addresses
A DW cell can belocated at any unrestricted address (08-3F).

IA (Inactive Algorithm)

The Inactive Algorithm (IA) cell type defines an inactive (disabled) algorithm descriptor.
An agorithm descriptor consists of two adjacent cells with access codes of 3. The valuesin
these cells affect the way an input string is scrambled via the sproQuery() function. An
inactive algorithm descriptor cannot be used for a query until it is activated by the
sproActivateAlgorithm() function.

The value in the second |1A word must be between 0000 and 7FFF. See Special Rules for
Algorithm Values for more information.

Chapter 3 - Programmable Memory

Cell Types
IA cells should aways have a password associated with them, so the algorithm can be
activated. They can aso have one or two counters.
Access Code
An 1A cell type has an access code of 3 (algorithm/hidden).
Valid Addresses

Thefirst A word must be at an unrestricted, even address (0 MOD 2). Additional
restrictions apply if a counter and/or password is used. For details, see Valid Addresses
for Algorithms.

OP (Overwrite Password)

The Overwrite Password (OP) cell type is used for cells 2 and 3 only. These cells contain
the overwrite password assigned to you by Rainbow Technologies or your distributor. This
value is pre-programmed into your key and cannot be modified.

Y ou must use your overwrite password to program, change, or delete the value in any cell
that has an access code of 1, 2, or 3 (that is, any cell that is not read/write data or
undefined).

Access Code
The OP cell type has an access code of 3 (algorithm/hidden).
Valid Addresses
The only cells defined as type OP are cells 2 and 3.

RW (Reserved Word)

The Reserved Word (RW) cell typeis used for cells 5 through 7 only. These are hidden
words that are reserved for use by Rainbow Technologies. Y ou cannot assign cell type RW
to any cell.

Access Code

An RW word has an access code of 3 (algorithm/hidden). Y ou cannot read or write to these
words.

SentinelSuperPro Programmer's Reference 19

Cell Types

20

Valid Addresses
The only cells defined as cell type RW are cells 5, 6, and 7.

SN (Serial Number)

The Serial Number (SN) cell typeis used for cell O only. Thisis aread-only data word that
contains the hardware key’ s serial number. The valuein cell O is pre-programmed and
cannot be modified. Y ou cannot assign cell type SN to any cell.

Note: Serial numbers range from 0-65535. They are assigned sequentially and can repest.

Access Code

The SN cell type has an access code of 1 (locked). Y ou can read the serial number but
cannot modify it.

Valid Addresses
The only cell defined astype SN iscell 0.

WP (Write Password)

The Write Password (WP) cell typeisused for cell 4 only. This cell contains the write
password assigned to you by Rainbow Technologies or your distributor. The valueis pre-
programmed and cannot be modified. Y ou cannot assign cell type WP to any cell.

Y our write password gives you the ability to program an undefined (empty) cell or to
change a data word cell (access code 0). Changes to any other cell type require the
overwrite password.

Access Code

The WP cell type has an access code of 3 (algorithm/hidden). Y ou cannot read or write to
this cell type.

Valid Addresses
The only cell defined astype WP iscell 4.

Chapter 3 - Programmable Memory

Special Rules for Algorithm Values

Special Rules for Algorithm Values

The value in the second word of an algorithm descriptor controls two features:

- Whether the algorithm is active or inactive. Only active algorithm descriptors can be

used for queries.

- Whether the enhanced algorithm engine is enabled or disabled.

The active/inactive state of an algorithm is controlled by bit 7 of the second (odd-
numbered) word of the algorithm descriptor. If thisbit is 1, the descriptor is active. If this
bit is 0, the descriptor isinactive.

The state of the enhanced algorithm engine is controlled by bit 6 of the second word of the
algorithm descriptor. If thisbit is 1, the enhanced engine is enabled. If thisbit is 0, the

enhanced engine is disabled.

Bits 6 and 7 are defined by the first hex character you enter for word 2 of an algorithm
descriptor. When you use the Advanced Editor to program your keys, it tellsyou if the

value you entered makes the algorithm active or inactive.

Table 3-4 summarizes the effect of the value of the second word on the algorithm

descriptor.

Table 3-4. Defining Word 2 of an Algorithm

Enhanced Engine

Enhanced Engine

Disabled Enabled
Algorithm Inactive 0000-3FFF 4000-7FFF
Algorithm Active 8000-BFFF CO000-FFFF

For example, an agorithm with a second word of 1FDC is inactive (disabled) and has the
enhanced engine disabled. An agorithm with a second word of DOOO is active (enabled for
gueries) and has the enhanced engine enabled.

SentinelSuperPro Programmer's Reference

21

Valid Addresses for Algorithms

Note: For maximum security, use of the enhanced algorithm engine is recommended for
all algorithms.

The enhanced algorithm feature is available only with the latest model of the
Sentinel SuperPro. If you plan to use keys purchased prior to June, 1995, use
values from 0000-3FFF (inactive) and 8000-BFFF (active).

Valid Addresses for Algorithms

Certain cell types are designed to be used only in groups. Specifically, agorithm activation
passwords (AP) and agorithm counters (CA) are used only in association with algorithm
descriptors (cell types AA, AH, and |A). There are address restrictions that apply to the
placement of these cell groupsin the hardware key. Y ou must be aware of the restrictions
when planning your programming layout.

The following combinations of algorithm descriptors, counters, and passwords are supported:

22

- Algorithm (2 cells)

- Algorithm with password (4 cells)

- Algorithm with counter (3 cells)

- Algorithm with two counters (4 cells)

- Algorithm with password and counter (5 cells)

- Algorithm with password and two counters (6 cells)

If you allow the SentinelWizard to design your key layout, it chooses appropriate locations
for your agorithms. If you use the Advanced Editor, you can choose the locations but are
not allowed to place an algorithm in an invalid position.

The address restrictions for these cell groups are summarized on the following pages. In
this discussion, an algorithm descriptor (shown in the charts as “algo™) can be defined using
AA, IA, or AH cdls.

Algorithm

An algorithm descriptor that does not have a counter or password can start in any
unrestricted cell with an even address.

Chapter 3 - Programmable Memory

Valid Addresses for Algorithms

algo algo

0OMOD 2 1MQOD 2

Algorithm with password

An algorithm descriptor that has an activation password (AP) must start in acell with an
address equal to 0 MOD 4. The two-word password must immediately follow.

algo algo AP AP
0OMOD 4 1MOD 4 2MOD 4 3MOD 4

Algorithm with one counter

An algorithm descriptor that has one counter (CA) must start in a cell with an address equal
to 4 MOD 8. The counter word must immediately precede the algorithm descriptor.

CA algo algo
3MOD 8 4MOD 8 5MOD 8

Algorithm with two counters

An algorithm descriptor that has two counters (CA) must start in acell with an address
equal to 4 MOD 8. The counter words must immediately precede the algorithm descriptor.

CA CA algo algo
2MOD 8 3MOD 8 4MOD 8 5MOD 8

Algorithm with password and one counter

An algorithm descriptor that has both a counter (CA) and an activation password (AP)
must start in a cell with an address equal to 4 MOD 8. The counter word must immediately
precede the algorithm descriptor, and the two-word password must immediately follow it.

SentinelSuperPro Programmer's Reference 23

Valid Addresses for Algorithms

24

CA algo algo AP AP
3MOD 8 4MOD 8 5MOD 8 6 MOD 8 7MOD 8

Algorithm with password and two counters

An algorithm descriptor that has two counters (CA) and an activation password (AP) must
start in acell with an address equal to 4 MOD 8. The counters must immediately precede
the algorithm descriptor, and the two-word password must immediately follow it.

CA CA algo algo AP AP
2mMob8 (3mMOD8 |4MOD8 |5MOD8 |6MOD8 |7MOD 8

Table 3-5 summarizes all valid locations for algorithm descriptors and their associated
counters and passwords. For example, the four cells that make up an algorithm with a
password can be in locations 08 through 0B, OC through OF, 10 through 13, and so on.

When you program an agorithm descriptor using the Advanced Editor, it automatically
determines which cell addresses are valid. It does not let you place an algorithm in an
invalid location.

Table 3-5. Valid Addresses For Algorithm Words

Chapter 3 - Programmable Memory

Valid Addresses for Algorithms

Algorithm Method

Valid Cell Addresses

Algorithm 08-09, OA-0B, 0C-0D, OE-OF, 10-11, 12-13,

(2 cells: algo, algo) 14-15, 16-17, 18-19, 1A-1B, 1C 1D, 1E-1F,
20-21, 22-23, 24-25, 26-27, 28-29, 2A-2B,
2C- 2D, 2E-2F, 30-31, 32-33, 34-35, 36-37,
38-39, 3A-3B, 3C 3D, 3E-3F

Algorithm with password 08-0B, 0C-OF, 10-13, 14-17, 18-1B, 1C 1F,

(4 cells: algo, algo, AP, AP) 20-23, 24-27, 28-2B, 2C 2F, 30-33, 34-37,
38-3B, 3C 3F

Algorithm with one counter 0B-0D, 13-15, 1B-1D, 23-25, 2B-2D, 33-35,

(3 cells: CA, ago, ago) 3B-3D

Algorithm with two counters OA-0D, 12-15, 1A-1D, 22-25, 2A-2D, 32-35,

(4 cells: CA, CA, ago, algo) 3A-3D

Algorithm with password and one 0B-OF, 13-17, 1B-1F, 23-27, 2B-2F, 33-37,

counter 3B- 3F

(5cells: CA, ago, ago, AP, AP)

Algorithm with password and two OA-OF, 12-17, 1A-1F, 22-27, 2A-2F, 32-37,

counters 3A- 3F

(6 cells: CA, CA, ago, dgo, AP, AP)

SentinelSuperPro Programmer's Reference 25

Valid Addresses for Algorithms

26 Chapter 3 - Programmable Memory

Chapter 4 - API Calls

The API functions used to communicate with the Sentinel SuperPro driver are summarized
in Table 4-1 and described in detail in this chapter.

The API calls are very similar across platforms. The differences are as follows:

- For OS2, Windows NT, and Windows 95/98, each function name is preceded by RNBO.
For example, the sprolnitialize() call is RNBOsprolnitialize().

- For OS/2, Windows NT, and Windows 95/98, al functions require a pointer to a packet
record (RBP_SPRO_APIPACKET) as a parameter. The Sentinel SuperPro driver uses
the data in the packet record to communicate with the hardware key. Y ou must alocate
memory for the record, and pass its starting address to the API functions. An application
program should never modify the data in the packet.

For DOS and Windows 3.x, all functions require a pointer to a structure called the
UNITINFO record. Thisis used in the same way asthe RBP_SPRO_APIPACKET
record, but has a different structure.

For suggestions on how different functions can be used to implement various protection

strategies, see Chapter 7. For the exact syntax required by your programming language,

refer to the sample program in your working directory. For more reference information on
the functions, see your language's API.TXT file.

Status codes that may be returned by the API are listed in Appendix A.

Summary of APl Functions

Table 4-1 presents a summary of the Sentinel SuperPro APl Functions:

SentinelSuperPro Programmer's Reference 27

Summary of API Functions

Table 4-1. Summary Of API Functions

Function

Description

sproActivateAlgorithm()

Activates an inactive algorithm descriptor so that it can be used by the
sproQuery() function.

sproDecrement() Decrements a counter word by 1. If the counter is associated with an
active algorithm descriptor, decrementing to O deactivates the
algorithm.

sproExtendedRead() Reads the value and access code of any unhidden memory word in the
key.

sproFindFirstUnit() Searches all attached keys for a specified developer ID.

sproFindNextUnit() Searches for the next key with the same developer ID.

sproFormatPacket() Validates the size of the packet (RBP_SPRO_APIPACKET) and

(Win 32 and OS2 only) initializes field defaults.

sproGetVersion() Returns the Sentinel SuperPro driver’s version number.

sprolnitialize() Performs any required initialization of the driver. This function must be
called once before any other API function is called.

sproOverwrite() Changes the value and/or access code of any word except the reserved
wordsin cells 0 through 7.

sproQuery() Sends a data string to the key, scramblesit using a specified algorithm
descriptor, and returns the scrambled string to the application.

sproRead() Reads the value of any unhidden memory word in the key.

sprowrite() Changes the value and/or access code of any word with an access code

of 0 (read/write data).

Note: For OS2, Windows NT, and Windows 95/98, each function name is preceded by

RNBO.

28

Chapter 4 - API Calls

sproActivateAlgorithm()

sproActivateAlgorithm()

The sproActivateAlgorithm() function activates a specified agorithm descriptor, making it
available for queries. Use of this function requires the write password, as it changes the
value in the algorithm descriptor.

To use this feature, you must define an algorithm descriptor that has an activation
password associated with it. For details, see Chapter 3.

sproActivateAlgorithm() provides a means for you to prevent an end user from using your
application before you give the user a password. Set a required agorithm descriptor to
inactive, and write a utility to activate it using the sproActivateAlgorithm() function. Then
give the activation utility and password to authorized users only. A user without the correct
password cannot run the application. For more details on this technique, see Using
Activation Passwordsin Chapter 7.

Parameters
The sproActivateAlgorithm() function requires the following parameters:
- A pointer to the packet record or UNITINFO structure.

- Your write password.

- The value programmed into the activation password (the two AP words that follow the
algorithm descriptor being activated).

- The address of the first (low-order) word of the algorithm descriptor to be activated. This
address must be even. For more information on valid addresses for algorithm words, see
Chapter 3.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproDecrement()

The sproDecrement() function subtracts 1 from the value in a read/write data word (access
code 0) or a counter word (access code 2). Use of this function requires the write password.

SentinelSuperPro Programmer's Reference 29

sproExtendedRead()

If you try to decrement alocked or hidden word, the driver returns access denied. If the
word aready contains the value 0, the driver returns already zero. Y our application should
check for both status codes.

sproDecrement() can be used to limit the number of times a demonstration program can be
executed. Y ou associate a counter with an algorithm descriptor, then decrement that counter
each time the program is executed. When the counter reaches O, the algorithm is deactivated
automatically. Future queries therefore return invalid responses. For more information on
defining an algorithm descriptor with a counter, see Chapter 3.

Parameters
The sproDecrement() function requires the following parameters:

- A pointer to the packet record or UNITINFO structure.

- Your write password.

- The address of the counter or data word to be decremented.
Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproExtendedRead()

30

The sproExtendedRead() function reads the value and access code of any unhidden memory
word. An unhidden word has an access code of O (read/write data), 1 (read-only data), or 2
(counter).

Algorithm/hidden words, which have an access code of 3, cannot be read. If you try to read
a hidden word, the driver returns access denied. Y ou can determine that aword is an
algorithm word by checking for this status.

Parameters
The sproExtendedRead() function requires the following parameters:

- A pointer to the packet record or UNITINFO structure.
- The address to be read.

Chapter 4 - API Calls

sproFindFirstUnit()

- A pointer to the contents of the specified word, returned by the driver if the call is
successful.

- A pointer to the access code of the specified word, returned by the driver if the call is
successful. Possible access codes are O (read/write data), 1 (read-only data), and 2
(counter). The call will never return an access code of 3 (algorithm/hidden).

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproFindFirstUnit()

The sproFindFirstUnit() function locates a Sentinel SuperPro key with a specified
developer ID. After calling sprolnitialize(), you must call this function before using any
other calls. If the hardware key isfound, the packet or UNITINFO record will contain valid
data. If no key isfound, the packet or UNITINFO record will be marked invalid.

sproFindFirstUnit() searches all cascaded units connected to any parallel port or USB port.
If multiple keys have the same developer 1D, sproFindFirstUnit() accesses the first key
found. If desired, use sproFindNextUnit() to find another key with the same developer ID.

Parameters
The sproFindFirstUnit() call requires the following parameters:

- - The developer 1D assigned to you by Rainbow Technologies or your distributor.
- - A pointer to the packet record or UNITINFO structure.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

SentinelSuperPro Programmer's Reference 31

sproFindNextUnit()

sproFindNextUnit()

The sproFindNextUnit() function searches for the next key with a given developer ID. The
developer ID is specified using sproFindFirstUnit(), which must be called first. (To find a
key with a different developer 1D, call sproFindFirstUnit() again.)

If sproFindNextUnit() is successful, the packet or UNITINFO record contains the data for
the next hardware key. If not successful, the packet or UNITINFO record is marked
invalid. To re-initialize the packet or UNITINFO record, use sproFindFirstUnit() and,
optionally, sproFindNextUnit() again.

sproFindNextUnit() searches al cascaded units connected to any parallel port or USB port.
If several keys are attached, your application can call sproFindNextUnit() multiple times.

Parameters

The sproFindNextUnit() function requires one parameter: a pointer to the packet record or
UNITINFO structure.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproFormatPacket() (Win 32 and OS/2 only)

32

The sproFormatPacket() function validates the size of the packet record and initializesiits
default values. This call must be made before calling any other API functions, or an error 2
(INVALID PACKET) will be returned.

Parameters
The sproFormatPacket() requires the following parameters:

- A pointer to the packet record (RBP_SPRO_APIPACKET).
- The value of PacketLen isan integer containing the packet length (1028 bytes).

Return Values

Chapter 4 - API Calls

sproGetVersion()

All functions return an unsigned, 16-bit value. A value of zero indicates a successful
operation; all other valuesindicate an error. If an error occurs, the function returns one of
the status codes listed in Appendix A. If anon-zero statusiis returned, then any other data
returned by the function will be meaningless.

sproGetVersion()

The sproGetVersion() function returns information on the Sentinel SuperPro driver being
used by the application.

Parameters

The sproGetVersion() function requires the following parameters:
- A pointer to the packet record or UNITINFO structure.

- A pointer to the location for the returned major version number.
- A pointer to the location for the returned minor version number.

- A pointer to the location for the returned revision number.
- A pointer to the location for the returned driver type identifier.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sprolnitialize()

The sprolnitialize() function lets the driver perform any needed initialization. Y our
application must call sprolnitialize() one time before calling any other AP function.

Parameters
The sprolnitialize() function requires no parameters.

Return Values

SentinelSuperPro Programmer's Reference 33

sproOverwrite()

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproOverwrite()

34

The sproOverwrite() function lets the application change the value and access code of any
word except the restricted cells (0 through 7). Use of this function requires both the write
and overwrite passwords.

Note: The overwrite password is extremely powerful. Try to restrict its use to your
factory instead of putting it in your released application. If your protection scheme
does not require the overwrite password from your application, Rainbow can
program each of your keys with a “random overwrite password.” Each key will
contain a different overwrite key password and can not be changed in the field.

Parameters

The sproOverwrite() function requires the following parameters:
- A pointer to the packet record or UNITINFO structure.

- Your write password.

- Your two-word overwrite password.

- The address you want to write to.

- The access code to be assigned to this word: O (read/write data), 1 (read-only data), 2
(counter), or 3 (algorithm/hidden).

- The value you want to write to this address.
Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

Chapter 4 - API Calls

sproQuery()

sproQuery()

The sproQuery() function lets the application send a query string to the Sentinel SuperPro
key. The application also specifies the algorithm descriptor to be used to scramble the
string.

The key scrambles the input string according to its proprietary algorithm and the
information stored in the specified agorithm descriptor. The key then returns the scrambled
string to the application. The application compares this response string to the expected
result to determine if the correct key is still attached to the parallel port or USB port.

During your development phase, use the Advanced Editor’s Evaluate API: Query option
to determine the responses your key’ s algorithm descriptors will return for given input
strings.

Parameters
The sproQuery() function requires the following parameters:

- A pointer to the packet record or UNITINFO structure.
-+ The number of bytes in the query string (maximum 56).
- A pointer (offset then segment) to the buffer containing the query string.

- A pointer to a buffer where the driver isto return the response string. Make sure this
buffer is large enough the hold the entire response string. Alternatively, you can pass a
pointer to alocation for the driver to return the last 32 bits of the response string.

- The address of the first (low-order) word of the algorithm descriptor to be used for the
query. This address must be even. See Chapter 3 for more information on agorithm word
addresses.

In genera, longer query strings offer greater protection. It is recommended that your query
strings be at least eight hex characters (32 bits) long. The maximum length of a query
string allowed by the driver is 56 bytes.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

SentinelSuperPro Programmer's Reference 35

sproRead()

sproRead()

The sproRead() function lets the application read the value of any unhidden memory word.
An unhidden word has an access code of 0 (read/write data), 1 (read-only data), or 2
(counter).

Algorithm/hidden words, which have an access code of 3, cannot be read. If you try to read
a hidden word, the driver returns access denied. Y ou can determine that aword is an
algorithm word by checking for this status.

sproRead() returns the word' s value but not its access code. To obtain the access code, use
sproExtendedRead().

Parameters
The sproRead() function requires the following parameters:

- - A pointer to the packet record or UNITINFO structure.
- - The address to be read.

- - A pointer to the contents of the specified word, returned by the driver if the call is
successful.

Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

sproWrite()

36

The sproWrite() function lets the application write to aword with an access code of 0
(read/write data). Use this function to program or change any data word or undefined
(empty) word.

To program aword with an access code of 1 (read-only data), 2 (counter), or 3
(algorithm/hidden), you must use the sproOverwrite() function.

Use of the sproWrite() function requires the write password.

Parameters

Chapter 4 - API Calls

sproWrite()

The sproWrite() function requires the following parameters:
- A pointer to the packet record or UNITINFO structure.
- Y our write password.
- The address you want to write to.

- The access code to be assigned to thisword: O (read/write data), 1 (read-only data), 2
(counter) or 3 (algorithm/hidden).

- The value to be written at the specified address.
Return Values

If successful, the function returns success. If an error occurs, the function returns one of the
status codes listed in Appendix A.

SentinelSuperPro Programmer's Reference 37

sproWrite()

38 Chapter 4 - API Calls

Chapter 5 - Using the Advanced
Editor

The Advanced Editor lets you program your hardware keys directly, rather than letting the
Wizard select the locations in which to store your algorithms, data, and counters.

Note: If you use the Advanced Editor, the SentinelWizard cannot generate APl pseudo-
code for you. Y ou must write the API calls required to use the values programmed
into your keys.

For genera information on the SentinelWizard, see the Sentinel SuperPro Developer’s
Guide.

Entering and Leaving the Advanced Editor

The Advanced Editor is accessed through the Sentinel Wizard.

While in the Sentine Wizard, click the Go to Advanced Editor button to launch the
Advanced Editor.

Y ou are prompted for a Profile name. A profile is the set of specifications you define with
the Sentinel Wizard or the Advanced Editor. This profile can be saved and reopened later to
program more keys with the same data. <profile name>.DAT isthe binary file created when
you save your Profile.

Note: For your convenience Rainbow can program your SuperPro keys prior to delivery
if you send us your profile .DAT file. Contact your Rainbow representative for
more information.

Once in the Advanced Editor, click Go to Wizard Mode if you want to return to the guided
process.

SentinelSuperPro Programmer's Reference 39

The Key Matrix

The Key Matrix

The Advanced Editor displays a matrix of the 64 cellsin a hardware key:

Serial Dev ID Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
08 09 DA 0B 1] [1]0] 1] = 0F
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 2h 26 27
28 29 24 2B 2C 2D 2E 2F
30 3 32 33 34 35 36 37
38 39 34 3B 3C 3D 3E 3F

Thefirst eight cells are reserved for system information. Y ou can program the other 56
cells.

Choosing Hex or Decimal

Y ou can choose whether you work in hex or decimal. To switch, pull down the Hex/Dec
box in the upper right corner of the screen and select the option you want.

e

Hex
Dec

Y our choice affects the way cells are numbered in the matrix and the values you enter.

How Cells Can Be Used

Each cdll or group of cellsin the key can be programmed in many different ways. The
choices are called “item types,” and each cell or group of cells you program is called an
“item.” The item types are summarized below.

40 Chapter 5 - Using the Advanced Editor

Programming Cells

Use this type...

If you want to...

Algorithm
(2 cells)

Scramble an input string but do not want an associated
counter or activation password.

Algorithm with Counter
(3 cdls)

Limit the number of times a demo program can be executed.

Algorithm with Counter and
Password
(5cdls)

Limit the number of times a demo program can be executed,
and provide a means for the program to be reactivated in the
field.

Algorithm with Password
(4 cels)

Require the user to enter a password to get the application to
run initially.

Algorithm with Two
Counters
(4 cels)

Use two counters. The first counter to reach O deactivates the
algorithm, which usually stops your application from running

properly.

Algorithm with Two
Counters and Password
(6 cells)

Implement an algorithm that is to be deactivated when either
of two counters reaches 0. The user must input a password to
activate or reactivate the application.

Algorithm Word

Implement an algorithm in which the two words are specified

(1 cdl) separately. For example, the user or installer may run a
program on-site to enter the other half.

Counter Word Limit the number of times a demo program can be executed,

(1 cdl) or count the number of times any particular operation is
performed.

Data Word Store a data value your application can read and change

(1 cdl) during execution.

Locked Data Word Store a data value your application can read but cannot change

(1 cdl) without the overwrite password.

Programming Cells

To program a cell in the hardware key, you select the cell and an item type. If the item type
requires multiple cells, the cells next to the one you select are allocated automatically.

SentinelSuperPro Programmer's Reference 41

Changing Cells

The Advanced Editor does not let you define an item if there is not enough room for it. For
example, the Advanced Editor does not et you program an Algorithm with Counter if the
cell you choose does not have two empty cells next to it.

To program a cell or group of cells:

1. Moveto one of the cells you want to program. Click the right mouse button, select
Create Item, and select an item type.

Or:

Click the tool bar icon for the item type you want, drag it to an unused cell, and release the
mouse button. (To see which item type each icon represents, pass the mouse pointer
over it.)

ey

soo || oo |[F& | £x

fOOl S| 105
OEGEY| [MEE e [=3E=3

(HEF

101D 1 (=1
(=R R l=]

hl=1=1] 1 1
2101 1

Hint When you drag an icon, the words Drop Here! appear when you pass over an
appropriate group of cells.

2. Enter the required data as prompted.
3. Click OK.

Changing Cells

42

Once cells are defined, you can change the stored values — for example, the value in a data
word or an agorithm descriptor.

Y ou cannot change the item type assigned to the cell. Instead, you must delete the item, then
add it back using the new item type.

To change the value in a cell:

1. Click the right mouse button on the item you want to change.
2. Select Edit Item.
3. Moaodify the cell value(s) as desired.

Chapter 5 - Using the Advanced Editor

Clearing Cells

4. Click OK.

Clearing Cells

To delete an item, right-click on it and select Delete Item. All cells used for that item will
be cleared.

To delete an item:

1. Click the right mouse button on the item you want to delete.
2. Sdect Delete ltem.
3. Toconfirm, click Delete Item. To keep theitem asis, click Cancel.

Updating the Attached Key

The Update K ey button at the top of the window indicates if the attached key and the
matrix on the screen arein sync.

Update Key

The button is enabled until the key is programmed during the session or when the matrix is
changed after the key is updated. If you have used the Wizard to program your key, the
Update Button will be disabled unless you make a change in the matrix.

To update all cells in the attached key:

1. Click the Update Key button. If this button is not enabled, the key’s memory has
already been updated to match the matrix.

2. Click Yesto confirm the write, or No to cancdl.
3. Click OK.

SentinelSuperPro Programmer's Reference 43

Querying the Attached Key

Querying the Attached Key

When your application sends a query to an algorithm descriptor in your key, it compares
the scrambled response to the response it expects. To determine the expected responses, you
must query the algorithm during your devel opment phase. Y ou can do thisin the Advanced
Editor by selecting an agorithm item and then selecting Evaluate API: Query.

To send a query to the attached key:
1. If the Update Key button is enabled, the data on your screen does not match that
programmed into the attached key. Click Update K ey to update the cells in the key.

2. Inthematrix, move to the item for the algorithm you want to query. Watch the hint text
that appears below the selected item to make sure you have the one you want.

Click the right mouse button.
Select Evaluate API.

Select Query.

Type the query string.

Click OK.

The Advanced Editor displays the result of the query. The value next to Responseis
the scrambled string your application should expect to receive when it sends the same

query.

© N o g~ w

Using Other API Calls

44

Right-clicking on an item and then selecting Evaluate API displays a menu listing API
calls. Select an API call to have it performed. For example, select Read to read the selected
cell, or Writeto write datato it.

For detailed information on each API call, see Chapter 4.

Selecting an API call may lead to a dialogue box where you enter required information. If
you select Write, for example, you are prompted for the data to be written.

The API call isthen made, and a box appears with the result from the driver. A successful
result isindicated by status code 0000. For help on unsuccessful responses, see Appendix
A.

Chapter 5 - Using the Advanced Editor

Using Other API Calls

The result box aso shows the details of the API call, such as the cell address and any data

specified.

| nput Par anet ers:

address = 21

data = 3333

accessCode = 0

Function Result = Success 0000

R I b b R S I kSRR O kR
*

C Language Prot otype:

int sproOverwite(UNITINFO *unitinfo
unsigned int witePassword,
unsigned int overwitePasswordl,
unsigned int overwitePassword2,
i nt addr ess,
unsi gned int data,
unsi gned char accessCode);

SentinelSuperPro Programmer's Reference

45

Using Other API Calls

46

Chapter 5 - Using the Advanced Editor

Chapter 6 - Using the Driver
Encryption Tools

This chapter applies only to developers of DOS applications and Windows 3.x applications
using alinked-in (non-DLL) driver.

The Sentinel SuperPro Driver Encryption Toolset provides you with an extralevel of
protection from potential hackers for DOS and Windows 3.1 applications using the linked-
in driver. Using the Driver Encryption Tools, you can substantially enhance the level of
security by hiding the code that communi cates with the hardware key.

The Driver Encryption toolset provides the following:

- A choice of four encryption methods.
- The option of specifying the starting encryption seed value.

- The option of specifying a modifier to be applied to the encryption seed value during the
encryption process. The modifier is applied after each byte in the driver is encrypted.

- The ability to encrypt the entire driver or a specified range of bytes. Different encryption
methods can be applied to different portions of the code, as long as each portion is
decrypted appropriately at runtime.

- The ability to re-encrypt the driver after runtime decryption.

- The ability to calculate checksums to validate the driver file before and after
encryption/decryption.

Using the toolset, you encrypt the Sentinel SuperPro driver object code file based on
parameters you specify. Y ou link your application to the encrypted driver file, then call
routines from within your application to decrypt the driver prior to communicating with the
hardware key. This process allows your application to have an “invisible” copy of the
driver on disk and in memory when the driver codeis not in use.

SentinelSuperPro Programmer's Reference a7

Using Driver Encryption with Windows Applications

Each language interface directory contains afile that defines the routines or macros you
will use to decrypt and optionally re-encrypt the driver from your protected application.
Thefile extension varies by language; the file name is usually SPROCRYP.

Note: Driver encryption is not supported for OS2, Windows NT, Windows 95/98 or
Windows with dynamic (DLL) linking.

Using Driver Encryption with Windows Applications

If you have a gtatically-linked Windows application and allow multiple instances to run
simultaneoudly, attempting to encrypt or decrypt the driver may cause a General Protection
Fault. This occurs because al instances of the application share the same code segment.
There are two ways to deal with this situation:

- Do not change the values of the encryption or decryption parameters at runtime. This
ensures that any instance of the application will encrypt or decrypt the driver the same
way every time. Y ou must aso encapsulate the entire process (decrypt, APl operation,
encrypt) in acritical section so that any instance of your application does not try to
decrypt code that is already decrypted.

- Do not use the encryption/decryption feature when running under Windows.

The Driver Encryption Process

48

SPROX.EXE, the Sentinel SuperPro driver encryption tool, is used to encrypt the driver
before the link process. After linking the encrypted driver to your protected application, the
resulting executable file contains encrypted code that must be decrypted at runtime, before
accessing the Sentinel SuperPro driver.

The overall driver encryption/decryption processis as follows:

1. Yourun SPROX to encrypt the Sentinel SuperPro driver. SPROX can be run
interactively or al parameters can be specified on the command line.

2. You modify your protected application to decrypt the driver (using the same parameters
you specified with SPROX) so you can communicate with the hardware key.

Chapter 6 - Using the Driver Encryption Tools

Available Encryption Methods

3. Youlink your protected application with the encrypted driver file.
The driver is therefore shipped in an encrypted form, and is decrypted only at runtime.

Note: For added security, the Sentinel SuperPro driver is released in an unusable
(unlinkable) state. Y ou must run SPROX against the driver file to produce alega
object codefile.

For convenience, SPROX provides an option that generates a legal object code file without
applying encryption. Therefore, you do not have to add decryption code to your protected
application. Y ou can use this option during the devel opment phase, but should not use it for
your final product.

Y ou can run SPROX more than once on the same file, producing layers of encryption. At
runtime, however, the driver must be completely decrypted before it can be accessed.
Layered encryption requires decryption to occur in reverse order; that is, the last area
encrypted with SPROX must be the first decrypted at runtime.

SPROX error messages are described in Appendix B. If you receive an error while running
SPROX interactively, press any key except ESC to continue. If you want to terminate
SPROX, press ESC. Some errors cause SPROX to abort. Any error generated when
SPROX is run with command-line parameters causes execution to abort.

Available Encryption Methods

Four methods can be used to encrypt the driver file: XOR, ADD, ROTATE, and SWAP.
These methods are described in Table 6-1.

For each method, you provide the initial encryption seed value and a modifier to be applied
to the seed value after each byte is encrypted.

Table 6-1. Encryption Methods

SentinelSuperPro Programmer's Reference 49

Running SPROX from the Command Line

Method Description

XOR Performs an exclusive OR against each byte in the Sentinel SuperPro driver
using the current encryption seed value.

ADD Adds the current encryption seed value to each byte in the Sentinel SuperPro
driver.

ROTATE Rotates the bits in each byte in the Sentinel SuperPro driver left one or right
one, depending on the current encryption seed value.

SWAP Swaps all byte pairs in the Sentinel SuperPro driver. At the current time, this
method does not use the encryption seed value or modifier. This method
reguires an even number of bytes in the encrypt/decrypt range.

Running SPROX from the Command Line

50

When you execute SPROX, you can enter parameters on the command line to specify all
desired encryption options. The full syntax for executing SPROX is.

SPROX. EXE [{-,/}<paraneter> . . . {-,/}<paramneter>]

Each parameter is a one-character code followed immediately by the value for that
parameter. Each parameter must be preceded by a space and a dash or a slash. Parameters
can be entered in any order, in upper- or lowercase.

After you execute SPROX using valid command-line parameters, it displays a summary
screen that shows:

- The name of the encrypted file.

- The name of the decryption routine you must call from your protected application to
decrypt thefile.

- The values of the parameters you must pass to the decryption routine.
- The before and after checksums calculated for the Sentinel SuperPro driver.

If desired, you can use a command-line parameter to have the above information written to
alog fileinstead of the screen.

Chapter 6 - Using the Driver Encryption Tools

Running SPROX from the Command Line

Summary of Parameters

Table 6-2 summarizes the parameters that can be specified on the SPROX command line.
Note the following:

- If no parameters are specified on the command line, SPROX prompts you for the needed
information. SPROX is aso invoked interactively if you specify only /V, /Q, /L, and/or
/U.

- You must specify /I if youuse/O, /M, /S, /A, IB, or /N.

- Thevaueslisted in the Default column in Table 6-2 are applied if you specify /1 but
omit the specified parameter. Note that some of the defaults provided are randomly
generated. Y ou may wish to provide your own values (that is, do not accept the defaults)
so you can run SPROX viaamakefile.

Table 6-2. SPROX Command-Line Parameters

SentinelSuperPro Programmer's Reference 51

Running SPROX from the Command Line

Parameter Description Default
/A{0...255} The value by which the encryption seed value is modified after random
each byte is encrypted.
/B{0..end of code} | The offset (inclusive) in the driver file at which to begin 0
encrypting. It is recommended that you encrypt the entire file
(/BO).
/Hor/? Provides help on all SPROX parameters.
/1<filename> The name of the input file (the driver file to be encrypted).
/L<filename> Logs SPROX summary information to the specified fileinstead | standard out
of the screen. Creates thefile if it does not exist; appendsto it if
it aready exists. Each summary is date/time-stamped.
IM{X,A,R,S} The encryption method to apply: X (XOR), A (ADD), R random
(ROTATE), or S (SWAP). See Available Encryption Methods for
details.
/N{O..bytesin The number of bytesin the driver file to encrypt. O representsthe | O
code} last byte in the file (inclusive); use O instead of the actual byte
count to avoid having to modify your application if the driver
size changes. It is recommended that you encrypt the entire file
(/NO).
/O<filename> The name of the output file (the encrypted driver file). SPROI!IT.OBJ
Q Invokes quiet mode: errors are displayed but sign-on/sign-off
messages are suppressed.
/S{1..255} Theinitial encryption seed value. random
/U Produces an unencrypted (but legal) output file. This method is
not recommended.
Y] Overwrites the output file if it already exists. If you are using
command-line parameters, you do not specify /V, and the file
named by /O already exists, SPROX aborts. If you are running
interactively, you are asked if you want to overwrite the file.
52 Chapter 6 - Using the Driver Encryption Tools

Running SPROX Interactively

Command-Line Examples

The following examples demondtrate the effect of various command-line parameters on
SPROX.

SPROX /| super pr o. obj

seed value, and seed modifier are assigned randomly by SPROX — different values are
generated each time. Because no byte range was specified, the entire driver is encrypted.
Thisis the minimum acceptable command line.

SPROX /1 superpro.obj /V /M [/S52
Encrypts SUPERPRO.OBJ using the XOR encryption method, creating an output file

initial encryption seed value is 52. The seed modifier is assigned randomly. Because no byte
range was specified, the entire driver is encrypted.

SPROX / Lencrpyt. | og

Invokes SPROX interactively because /I was not specified. SPROX will record the
summary information (details on the encryption parameters specified or selected by
random) in afile called ENCRY PT.LOG.

SPROX -ix.0bj -oxt2.0bj -mA -s2 -a25 -n1400

Encrypts the X.OBJ file using the ADD encryption method, creating an output file called
X2.0BJ. SPROX abortsif X2.0BJ already exists. The initial seed valueis 2 and the seed
modifier is 25. Bytes 0 through 1399 of the Sentinel SuperPro driver (for atotal of 1400
bytes) are encrypted.

Running SPROX Interactively

If you execute SPROX with no parameters on the command line, the utility prompts you
interactively for all required encryption specifications.

SPROX is aso invoked interactively if you enter no command-line parameters other than
/L, IV, /Q, and /U. You may wish to use/L onthe command line to write the encryption
parametersto alog file. (By default, SPROX displays the parameters and checksum
information on the screen.)

SentinelSuperPro Programmer's Reference 53

Running SPROX Interactively

SPROX shows the default value, if oneis provided, in parentheses after each prompt. To
accept the displayed default, press ENTER without typing an entry.

To run SPROX interactively:

1. Moveto the directory in which SPROX isinstalled.
2. Type SPROX and press ENTER.
3. Read the introductory screen, then press ENTER.

File to encrypt =>

4. Enter the name of the Sentinel SuperPro driver object file (usually SUPERPRO.OBJ).
PressENTER.
Qutput file (Press ENTER for SPRO!I!.OBJ) =>

5. Enter aname for the output (encrypted) driver file and press ENTER. If you want the

If thefile already exists, you are asked if you want to overwriteit. Type Y to replace the
existing file, or N to specify adifferent name for the new file.
Encrypti on nmet hod: Xor, Add, Rotate, Swap
(Press ENTER for a random sel ection) =>
6. Typethefirst letter (X, A, R, or S) of the encryption method you want and press
ENTER. If you want SPROX to select a method randomly, just press ENTER. See
Available Encryption Methods for descriptions.

Starting encryption seed: 1..255
(Press ENTER for a random sel ection) =>

7. Typethe encryption seed value you want (1 through 255) and press ENTER. If you
want SPROX to select a value randomly, just press ENTER.

Seed nodifier: 0..255
(Press ENTER for a random sel ection) =>

8. Type the seed modifier you want (O through 255) and press ENTER. If you want
SPROX to select a modifier randomly, just press ENTER.

Encrypti on Range: <1st byte: 0..1937><space><Nunber of bytes:
0..1938>
(Press ENTER to specify the entire file) =>

9. If you want to encrypt the entire file, press ENTER. If you want to specify a byte
range, type the following and press ENTER:

54 Chapter 6 - Using the Driver Encryption Tools

Encrypting and Decrypting from Your Application

- Thefirst byte to be encrypted (zero-relative). Y our entry must be between 0 and the
number displayed (the last byte in thefile).

- A gpace.

- The total number of bytes to be encrypted. Y our entry must be between 0 and the
number displayed (the file’ stotal byte count). Enter O if you want to encrypt through
the last byte of thefile. If you selected SWAP encryption, this number must be even.

File to encrypt => SUPERPRO. OBJ
Qutput file => SPRO!'!'l. OBJ
Encrypti on met hod = X

Encrypti on Seed => 52

Seed Modifier => 162

Encrypti on range => 0..1937 (1938 bytes)
Is this information correct (Y/n)?

10. Review the displayed data. If it is correct, type Y and press ENTER. If not, type N,
press ENTER, and go back to step 4.

11. If you did not enter /L on the command line, a summary screen appears. Make a note of
the following important information:

- The name of the encrypted file.

- The name of the decryption routine you must call from your protected application to
decrypt thefile.

- The values of the parameters you must pass to the decryption routine.
- The before and after checksums calculated for the driver file.

Encrypting and Decrypting from Your Application

After encrypting the Sentinel SuperPro driver with SPROX, you must add code to your
protected application to decrypt the driver prior to sending commands to the hardware key.
If desired, you can aso re-encrypt the driver from within your protected application.

If you ran SPROX multiple times to generate layers of encryption, your protected
application must decrypt the driver the same number of times, in reverse order. For
example, if you encrypted the file with XOR, then with ADD, you must decrypt with ADD,
then with XOR.

SentinelSuperPro Programmer's Reference 55

Encrypting and Decrypting from Your Application

Routines or macros are provided to perform both decryption and encryption, using any of
the four available methods. A routine is also provided for calculating the driver code
checksum.

The information on the following pages has been generalized. Refer to the interface file for
your development language for specific interface details.

Encryption and Decryption Routines

Routines or macros are provided to support the four available encryption methods (XOR,
ADD, ROTATE, and SWAP). Usudly, six routines are provided, although some language
interfaces have eight. The routines are summarized in Table 6-3.

All encryption/decryption routines require the following parameters:
- Theinitial encryption seed value.
- The seed modifier to be applied after each byte is encrypted.

- Thefirst bytein the file to encrypt/decrypt.
- The number of bytes to be encrypted/decrypted.

Note: The decryption/re-encryption routines do not verify byte ranges at runtime. Be
careful not to access areas outside the Sentinel SuperPro driver.

56 Chapter 6 - Using the Driver Encryption Tools

Encrypting and Decrypting from Your Application

Table 6-3. Encryption/Decryption Macros

Encryption Routine/ Description
Method Macro
XOR CryptX Encrypts by XOR’ing the seed against each byte.
DeCryptX Decrypts by XOR'’ing the seed against each byte. This routine may
be the same as CryptX.
ADD CryptA Encrypts by adding the seed to each byte.
DecryptA Decrypts by subtracting the seed from each byte.
ROTATE CryptR Encrypts by rotating the bits in each byte by 1 left or right,
depending on the current seed value.
DecryptR Decrypts by rotating the bits in each byte back to the original
position.
SWAP CryptS Encrypts by swapping byte pairs. This method requires an even
number of bytes.
DeCryptS Decrypts by swapping byte pairs. This method requires an even

number of bytes. This routine may be the same as CryptS.

Checksum Routine

When you run SPROX to encrypt the driver object file, it calculates before and after
checksums. After decrypting the driver from your protected application, you may wish to
verify the checksum to ensure that the object file is intact.

One routine or macro is provided to calculate the checksum of a specified byte range in the
Sentinel SuperPro driver file. This routine, ChkSum, generates along checksum.

The parameters required by ChkSum are:

- Thefirst bytein the file to include in the checksum calculation.
- Thelast bytein the file to include in the checksum calculation.

- The variable to contain the result of the checksum. Note that for most languages, the
ChkSum macro does not zero this variable first.

SentinelSuperPro Programmer's Reference 57

Encrypting and Decrypting from Your Application

Remember that SPROX reports the before and after checksum calculations each timeiit is
executed.

58 Chapter 6 - Using the Driver Encryption Tools

Chapter 7 - Advanced Protection
Techniques

The goal of any software protection scheme based on the Sentinel SuperPro isto
significantly reduce the chance that someone can defeat the protection and use your
software without the hardware key. In genera, the time and expense required for a skilled
pirate to break your schemeis directly related to the number and complexity of the locks
you place in your software. Protection can be as ssmple or as complex as you wish.

This chapter describes several methods you can use, singly or together, to protect your
application. Many of these schemes are based on one or more of the following general
methods:

- Overload potentia pirates with data by calling the hardware key many times throughout
your code.

- Decentralize your locks throughout the code, rather than restricting them to afew places
that can be easily detected and eliminated.

- Distract potential pirates with locks that make your application perform long series of
meaningless operations. These calls mislead hackers and make your valid locks harder to
isolate.

Some techniques can be used with returned values sent from any of the three types of words
(data, counter, and algorithm descriptors). Other techniques can be used with only one type
of word. The term “returned value” is used for the response from any type of cell.

Once you have an idea of the types of protection strategies you want to use, you must
consider how you want to program the 56 non-restricted cells of the hardware key to
implement your strategies.

A primary consideration is the number of applications that will share the key. Any of your
applications can use any cell, but you must make sure to allow enough cells for the type of
protection you want for each application.

SentinelSuperPro Programmer's Reference 59

About the Examples

After you have planned your configuration design, use the SentinelWizard' s Advanced
Editor to program the hardware keys with your chosen values.

About the Examples

All values and cell numbers used in the examplesin this chapter are in hexadecimal format.

For simplicity, standard error-checking steps are omitted from the examples. If you receive
an invalid response to a query or another function, always retry the operation before taking
action.

Asexplained in Chapter 6, you must encrypt linked-in drivers with the SPROX utility
before linking them to your application. Within your code, you must call aroutine to
decrypt the driver before each API call, then optionally call another routine to re-encrypt
the driver afterward. For smplicity, these routines are not included in the examples.

The API function names referenced in the examples are those used for DOS and Windows.
For OS2, Windows NT, and Windows 95/98, each function name must be preceded by
RNBO.

Basic Guidelines

60

To ensure that your protection scheme is effective, follow these basic guidelines:

- Send queries frequently. One of the most basic and effective techniques you can use to
confound hackersisto call the Sentinel SuperPro key frequently. If you rely on asingle
call at the beginning, it is relatively easy for a skilled pirate to isolate the call and defeat
your protection.

Another potential problem with querying only once is that a user could remove the key after
starting the application. The key could then be used to run another copy of the
application. The first copy would continue to run since no queries are being performed to
check for the key’ s continued presence.

- Scatter lock components. Software locks consist of multiple steps: calling the key,
evaluating the returned value, and acting on the evaluation results. For added protection
against piracy, separate these lock components in your code. A software lock is harder to

Chapter 7 - Advanced Protection Techniques

Reading Stored Data

break if its components are physically separated into different sections of the application
than if they are located together.

- Manipulate data. Use the data returned from the Sentinel SuperPro in various ways. For
example, leave the result in a global variable, then check it later.

Reading Stored Data

For a smple protection scheme, simply read a cell in the key and verify that it contains the
correct data. If it does, continue execution. If the correct data is not found, assume the key
is not attached and proceed accordingly.

Example

In this example, you program one cdll in the hardware key with atwo-byte value. Y ou then
have your application read that cell during execution, taking appropriate action after the
read.

1. Select atwo-byte value. We will use 1234.
2. Choose acel inwhich to program this value. We will use cdll 20.

3. Usethe Advanced Editor to program cell 20 with the value 1234. Use the item type
Data Word if you want the application to be able to modify the cell later. Use L ocked
Data Word if you want the cell to be read-only.

4. Embed the required API functionsin your application code. Code your application to
display an error or abort if the read operation does not return the value you pro-
grammed. (Of course, you should retry the operation before taking a negative action.)

To meet these objectives, your code must contain the following API calls:
- gprolnitialize() - Performs required initialization.

- gproFindFirstUnit() - Establishes communication with the key and updates the
packet record or UNITINFO structure.

- gproRead() - Reads the cell and returnsthe valuein it.

SentinelSuperPro Programmer's Reference 61

Using Algorithms to Scramble Data

Using Algorithms to Scramble Data

62

For more protection, you can send a data string to the key, have it scrambled using a pre-
programmed agorithm descriptor, then examine the returned value. Y ou can simply verify
that the correct scrambled string was returned, or use that value to control your program’s
execution in some way.

Remember that longer query strings generally offer greater protection. It is recommended
that your query strings be at least 32 bits (eight hex characters) long.

Example

This example demonstrates how to set up your application to require a correctly scrambled
response from the hardware key.

1.

Select two 16-hit hex values to use for the algorithm descriptor. We will use 1234 and
C000. Remember that the second word must between 8000 and FFFF to make the
algorithm active.

Choose two cellsin which to program these values. We will use cells OA and OB.
Remember that the first address must be even.

Choose an input string (preferably at least 32 bits long) to send to the key to be
scrambled. We will use 8FA31B4B.

Using the Advanced Editor, create an Algorithm item at location OA. Enter 1234 for
the first word and C000 for the second.

Use the Program command to program atest key with your specifications.

Right-click on cell OA, select Evaluate API, then select Query. Determine the scram-
bled value your key will return for a query string of 8FA31B4B. We will assume the
returned valueis 1BC235B1.

Embed the appropriate API callsinto your application to make the query. Code your
application to display a message and exit if the query does not return the correct value
(1BC235B1).

To meet these objectives, your code must contain the following API calls:

- gprolnitialize() - Performs required initialization.

- gproFindFirstUnit() - Establishes communication with the key and updates the
packet record or UNITINFO structure.

- sproQuery() - Sends the query string and points to alocation for the response string.

Chapter 7 - Advanced Protection Techniques

Using a Scrambled Value to Encrypt Code

Using a Scrambled Value to Encrypt Code

You can use a scrambled value from the hardware key to encrypt and decrypt a portion of
your application.

During development, you query the key and obtain a scrambled string, and then use this
string to encrypt your application code. Y ou then design your application to query the key
again during execution. If the key is present, it returns the string needed to decrypt your
code.

Example

1. Select two 16-bit hex values to use for your algorithm descriptor. We will use 4D59
and F123. Remember that the second word must be between 8000 and FFFF to make
the algorithm descriptor active.

2. Choose two cellsin which to program these values. We will use cells OA and 0B.
Remember that the first address must be even.

3. Choose an input string (preferably at least 32 bits long) to send to the key to be
scrambled. We will use 7009AB12.

4. Usethe Advanced Editor to assign an Algorithm item at address OA. Enter 4D59 for
the first word and F123 for the second.

5. Using the Program option, program atest key with your specifications.
6. Right-click on cell 0A, select Evaluate API, then select Query. Determine the
scrambled value your test key will return for a query string of 7009AB12.

We will assume the returned value is 289CA 110. Thiswill be the encryption seed with
which you will encrypt part of your code.

7. Select an encryption method. We will use the Boolean operator XOR.

8. Select the essentia datain your code that you want to encrypt. We will use the hex
vaue 8FA31B4B.

9. Apply the selected operator to the data, using the encryption seed. For this example, the
result is A73FBASB. (See Encryption Techniquesin this chapter for details on the
XOR operator.)

If you ship your application with the encrypted code, it will not execute correctly until the
code is decrypted by a query.

SentinelSuperPro Programmer's Reference 63

Using Returned Values as Variables

10. Design your application so that it decrypts the encrypted code if the hardware key is
present.

To do this, query the hardware key. If the key is present, the sproQuery() function will
return the response string of 289CA 110 that you used for an encryption seed.

Because XOR is areversible operation, applying the same encryption seed to the encrypted
datawill return the datato its original state, and your program should continue to exe-
cute properly.

To meet these objectives, your code must contain the following API calls:

- gprolnitialize() - Performs required initialization.
- gproFindFirstUnit() - Establishes communication with the key and updates the
packet record or UNITINFO structure.

- sproQuery() - Sends the query string and points to alocation for the response string.

Using Returned Values as Variables

64

Because software is generally easier to break than hardware, most pirates will try to break
your package by attacking the software. Therefore, any tricks or traps you can implement
in your code by incorporating a response from the hardware key will add even more
protection.

One effective technique is to disguise software locks in a high-level language by using
Sentinel SuperPro values to control program flow. With this method, a value returned by the
key becomes alogical pointer or selection key to the next execution step or the next
subroutine. This makes analysis of your code more difficult.

Another way to use areturned value isto add it to the value of avariable so that the sumis
the desired value of the variable. If the variable is used in other parts of the code, then that
code is dependent on the call to the Sentinel SuperPro.

Example
Suppose that at some point in your application you want a variable to contain the value 13.

Assume that one of the query strings you send to the Sentinel SuperPro returns the decimal
number 12,345. Set the variable to -12,332, send the query, and add the response to the
variable. If the proper key is attached, the variable will contain the correct value.

Chapter 7 - Advanced Protection Techniques

Controlling Demo Applications

Controlling Demo Applications

Y ou can use a counter word to limit the number of times an application (usually a demo
version) can be executed. Y ou set the counter to the desired limit, then subtract 1 each time
the program is run. The decrement is performed using the sproDecrement() function.

If desired, you can simply check the counter to seeif it has reached 0, then proceed
accordingly. Using this method, the word you decrement and read can be either a data word
or a counter.

For more secure protection, you can tie the counter to an algorithm descriptor that the
application requires for queries. When the counter reaches 0O, the associated algorithm is
deactivated automatically. (sproDecrement() changes the high-order bit of the algorithm
descriptor’ s second word.) Future queries that use this algorithm return incorrect responses.

To limit program executions using an algorithm/counter, you must program the key to meet
the following specifications:

- The word you decrement must be a counter word.

- The counter must be located at an address equal to 3 MOD 8.

- The two words immediately following the counter (at addresses equal to 4 MOD 8 and 5
MOD 8) must contain an active agorithm descriptor.

Note: The relationship between a counter word (in an address equal to 3 MOD 8) and an
adjacent algorithm descriptor exists even if you do not intentionally plan it. The
algorithm will be deactivated when the counter reaches 0.

You can aso use two counters. the algorithm is deactivated when either counter reaches 0.
The second counter must be located at an address equal to 2 MOD 8.

If you want to be able to reactivate the application after it has been shut down, you must
define an activation password. Thisis atwo-word vaue immediately following the
algorithm descriptor. See Using Activation Passwords in this chapter for details.

Remember that the counter will still be O after the algorithm is reactivated, so make sure
your application checks for the alr eady zer o status from the driver. (Y ou could reset the
counter and do decrements again, but this would require putting your overwrite password
into the activation utility. Generally, you should avoid using your overwrite password in the
field.)

SentinelSuperPro Programmer's Reference 65

Controlling Demo Applications

66

Any of the following item types can be used to program an algorithm with a counter:
Algorithm with Counter, Algorithm with Counter and Password, Algorithm with Two
Counters, or Algorithm with Two Counters and Password.

The following key layout illustrates an agorithm with one counter and a password:

CA AA AA AP AP

0B 0oC 0b OE OF

Cdll OB contains the counter you are decrementing. Cells OC and OD contain the active
algorithm descriptor (cell type AA). The second AA word must be between 8000 and
FFFF—this value will be changed automatically when the counter reaches 0.

Cells OE and OF contain the activation password. Thisis the password that is required to
reactivate the application after the counter reaches 0.

Example

This example demonstrates how to limit the number of times a demonstration application
can execute. Thisis done by requiring the application to query an algorithm descriptor that
becomes unusable (deactivated) after a specified number of executions. The algorithm
descriptor is associated with a counter that is initialized to the number of times the program
can be run.

Remember that if you want to let the user reactivate the application after the counter has
reached 0, you must also program an activation password.

1. Select the cells you want to use for the agorithm and counter. (Review the address
restrictionsin Chapter 3.) We will use the following cells:

counter algo1l algo 2

0B 0oC 0b

2. Decide how many times you want the demo program to run. We will use 5.

3. Select two 16-bit hex values to use for the agorithm descriptor. We will use 1234 and
C000. Remember that the second word must be between 8000 and FFFF to make the
algorithm descriptor active.

Chapter 7 - Advanced Protection Techniques

Using Activation Passwords

4. Select an input string (preferably at least 32 bits long) to send to the key. We will use
ABCDDCBA.

5. Usethe Advanced Editor to program an Algorithm with Counter item at address 0B:

Algorithm: 1234 C000
Counter: 5

Note that if you want to provide the ability to reactivate the algorithm in the field, you must
use the Algorithm with Counter and Password item type instead. This item type lets
you program an activation password into the two cells following the algorithm
descriptor.

6. Add the appropriate API calls to your application:
- gprolnitialize() - Performs required initialization.

- gproFindFirstUnit() - Establishes communication with the key and updates the
packet record or UNITINFO structure.

- gproDecrement() - Decrements the counter by 1. Call this function every time your
application executes. On the fifth execution, the counter in cell OB reaches 0. At this
point, sproDecrement() deactivates the algorithm descriptor used by the sproQuery()
function (see below). On the sixth execution, therefore, the query does not return the
expected value. Usualy, you would code the application to display a message and
then terminate.

- sproQuery() - Sends the query string and specifies alocation for the response string.
To make a potential hacker’s task more difficult, separate the sproQuery() and

sproDecrement() function callsin your code. This helps obscure the connection
between them.

Using Activation Passwords

Y ou can program the hardware key so that an algorithm descriptor is protected by an
activation password. The algorithm descriptor and password are each two words long. The
algorithm password must immediately follow the algorithm descriptor. (See Chapter 3 for
details on address restrictions.)

For example, cells 14 through 17 can be used as follows:

SentinelSuperPro Programmer's Reference 67

Using Activation Passwords

68

algodesc 1 algo desc 2 algo password 1 | algo password 2
14 15 16 17

By defining an algorithm descriptor with an activation password, you can prevent a user
from using your application before you have supplied a password.

The basic steps to this process are the following:

1. Atthefactory, set the algorithm descriptor to inactive.

2. Design your application so that it executes only after receiving a response string from
the (currently inactive) agorithm descriptor.

3. Writeauutility that uses the sproActivateAlgorithm() API function to activate the
algorithm, once the user provides a password in the field.

4. After buying your application, the user runs your initialization utility, entering the
password you provide. The algorithm will now return the correct query response string,
thereby alowing the protected application to execute.

For added security, you may wish to use a different activation password for each customer
(each key/utility).

Example

This example demonstrates how to activate a disabled application. Usually, an application
is deactivated because a demo application has been “turned off” after the specified number
of executions. Alternatively, you may have set up your application so that the user must
enter an activation password before the application will run.

Y ou temporarily “turn off” an application by including a sproQuery() call that requires the
hardware key to return a correctly scrambled string. Then, you make it impossible for the
hardware key to return the string because its algorithm descriptor has been set to inactive.

By definition, an algorithm descriptor is inactive if the high-order bit of its second word is
0. Thisis done asfollows:

- If acounter is used, the sproDecrement() function sets the bit to 0.

- Inthe factory, use the Advanced Editor to set the second word of the algorithm descriptor
to a value between 0000 and 7FFF.

Chapter 7 - Advanced Protection Techniques

Querying Activation Passwords

Y ou must also write a utility that activates the a gorithm descriptor, once the user provides
the correct password. The query performed by the protected application will then return the
correct response, and the application will run successfully.

The following example assumes that you release your application in a deactivated state, and
provide a password and utility to activate it.

1. Usethe Advanced Editor to program an Algorithm with Password at address OC, as
follows:

Algorithm: 0123 3456
Password: AB16 09C5

Note that the value in the second word of the agorithm descriptor must be between 0000
and 7FFF to make the algorithm inactive.

2. Write a utility with which the user can enter the password you supply.

3. Embed the required API callsin your application to query the hardware key using the
activated algorithm descriptor.

To meet these objectives, your code must contain the following API calls. Note that this
describes the activation utility, not the protected application that is being activated.

- gprolnitialize() - Performs required initialization.

- gproFindFirstUnit() - Establishes communication with the key and updates the
packet record or UNITINFO structure.

- gproActivateAlgorithm() - Passes the string input by the user, your write password,
and the address of the first word of the algorithm descriptor. If the password is
correct, sproActivateAlgorithm() changes the agorithm descriptor’ s active/inactive
bit to active, making it available for queries.

Y ou may wish to send a query using the agorithm descriptor before calling
sproActivateAlgorithm(). If the query returns the correct response, the agorithm is
already activated.

Querying Activation Passwords

Normally, an agorithm password is used to activate an inactive algorithm descriptor, as
described in Using Activation Passwor ds.

SentinelSuperPro Programmer's Reference 69

Using One Key for Multiple Applications

Note that an algorithm password has an access code of 3, meaning that it is an algorithm
word. You can therefore use the password itself as an agorithm descriptor.

To make a password an active algorithm descriptor, you must set bit 7 of its second word
to 1. (Using the Advanced Editor, set the value in the second word to a number between
8000 and FFFF.) Y ou can then use the sproQuery() API function to send an input string to
the key, specifying the starting address of the password. The key scrambles the input string
according to the bit pattern of the algorithm password, and the driver returns the scrambled
response string to your application.

This technique provides an alternate method of querying the key. For example, you may
want to query the algorithm password before invoking the sproActivateAlgorithm()
function, to verify that the password appears to be correct. Note that you cannot do thisiif
you use a different activation password for each customer.

Using One Key for Multiple Applications

One Sentinel SuperPro key can be used to protect multiple applications. Usually, you do this
by designating certain cells for each application.

The sample layout below illustrates how you can use one key to protect seven applications.
Each application is assigned a group of cells consisting of two data words (cell type DW),
two algorithm counters (cell type CA), one inactive algorithm descriptor (cell typelA), and
an activation password (cell type AP).

0/8 1/9 2IA 3B 4/C 5/D 6/E 7IF

00| SN DI OoP OoP WP RW RW RW
08 | DW DW CA CA 1A 1A AP AP
10 | DW DW CA CA 1A 1A AP AP
18 | DW DW CA CA 1A 1A AP AP
20 | DW DW CA CA 1A 1A AP AP
28 | DW DW CA CA 1A 1A AP AP
30 | DW DW CA CA 1A 1A AP AP
38| DW DW CA CA 1A 1A AP AP

70 Chapter 7 - Advanced Protection Techniques

Obstructing Debuggers

Application 1 would use cells 8 through F, application 2 would use cells 10 through 17, and
so on. The valuesin the restricted cells (0 through 7) are shared by all of the applications.

Obstructing Debuggers

Many potentia pirates use debuggers to break large, complex software packages with high
licensing fees. Y ou may want to incorporate safeguards aimed directly at preventing the use
of debug programs to circumvent software locks. For example, you might lock out the
keyboard during Sentinel SuperPro queries, or destroy the contents of interrupt vectors 1
and 3 (the trace and breakpoint interrupts).

While no technique can deter every pirate, the more safeguards you use, and the greater the
variety you use, the more difficult the pirate’ s task. Eventually it makes more sense for
potential piratesto either purchase your product or pirate a different, less secure package.

Assembler Language Techniques

Implementing Sentinel SuperPro protection in assembly language offers more flexibility than
other languages. Note, however, that you can use only one Sentinel SuperPro interface
subroutine to make hardware key queries. If you try to link two different interface sub-
routines with your application, you may get doubly defined symbols.

Many potentia pirates use debug programs to break large, complex software packages with
high licensing fees. Y ou may want to incorporate safeguards aimed directly at preventing
the use of debug programs to circumvent software locks.

While no technique can deter every pirate, the more safeguards you use, and the greater the
variety you use, the more difficult the pirate’ s task. Eventually it makes more sense for
potential piratesto either purchase your product or pirate a different, less secure package.

Hiding Calls

A pirate may analyze your object code and examine addresses referenced by CALL
instructions to find the calls to the Sentinel SuperPro interface routines. The pirate could

SentinelSuperPro Programmer's Reference 71

Encryption Techniques

72

then analyze the code of the interface routine and the code following each call in order to
defeat the lock.

One method to avoid detection of your queriesisto call the Sentinel SuperPro without using
the assembler language CALL instruction. Instead, push the return address onto the stack
followed by the procedure address, and then execute a RET (return) instruction.

Inserting Extra Data

Analysis of your code can also be made more difficult by inserting frequent “garbage” data
bytes. This processis effective at throwing static disassemblers “out of sync.”

For example, after each unconditional jump and return, insert a garbage data byte or two
whose value is equal to the first byte of avery long assembly language instruction.

This same technique can be used following conditiona branches, aslong as the preceding
code always guarantees the branch is invoked. Such ajump or branch may also be used
immediately prior to the call, with an intervening data byte.

Encryption Techniques

Another effective method for protecting your application isto use reversible encryption
techniques to encrypt and decrypt data.

To do this, you can use the sproQuery() function to scramble a data string, and then use the
scrambled response string to encrypt your application code. Y ou would then ship your
application to the field with encrypted code, which is decrypted only if the hardware key is
attached to the parallel port or USB port.

Most encryption algorithms depend on a key value, sometimes called a password or seed, to
transform the data. Some encryption algorithms are reversible: they can be used to decrypt
what is encrypted.

Using a different seed produces different encrypted results, but reproduces the origina data
if that seed is also used for decryption.

Note that these techniques may be difficult or impossible to implement in some languages.

Chapter 7 - Advanced Protection Techniques

Encryption Techniques

Using Returned Values as Encryption Seeds

Y ou can use Sentinel SuperPro returned values as encryption seeds to disguise critical
portions of data or code as random data until decrypted for use. If the encryption seed is
derived from values produced by the Sentinel SuperPro, the correct hardware key must be
present before the code can be decrypted and executed.

When decrypted datais “in the clear,” use some other form of protection to block interrupts
that are used by debuggers to gain control.

The most common reversible agorithms use the Boolean operator EXCLUSIVE OR
(XOR). XOR works as follows:

- If aseed bit hasavalue of 1, XOR reverses the state of the corresponding bit in the
original string and copiesit to the result.

- If aseed bit has avalue of 0, XOR copies the corresponding bit in the origina string to
the result.

Applying the same agorithm to the result reverses the encryption and restores the data to its
original state.

Example

The following example uses the XOR operator to encrypt a 16-bit hex number (8FA3)
using the seed 4B6A.

Hex Binary Description
8FA3 1000111110100011 data to encrypt
4B6A 0100101101101010 seed

XOR algorithm

C4C9 1100010011001001 encrypted result

Note that everywhere a bit in the seed is 1, the result bit is the opposite state of the data bit.
Where the seed contains a 0, the result bit is the same as the data bit. Without knowing the
seed, the encrypted result is meaningless.

To reproduce the original data, apply the XOR algorithm to the encrypted result using the
same seed, as shown below.

SentinelSuperPro Programmer's Reference 73

Encryption Techniques

74

Hex Binary Description
C4C9 1100010011001001 encrypted result
4B6A 0100101101101010 seed

XOR algorithm

8FA3 1000111110100011 original data

Using Longer Encryption Seeds

If the datato encrypt is longer, alonger seed can be congtructed. The scheme for forming
such a seed may be as complicated as you wish.

For example, the number 4B6A can be expanded to a 32-byte string by “rotating” it left 15
times and stringing the results of each rotation together. This yields the following hex
string:

4B6A 96D4 2DA9 5B52 B6A4 6D49 DA92 B525
6A4B D496 A92D 525B A4B6 496D 92DA 25B5

Y ou can use this string as a seed with the XOR agorithm to encrypt a 32-byte string.
For example, the ASCII string “This is the secret of my program” can be represented as the
following hex string:

5468 6973 2069 7320 7468 6520 7365 6372
6574 206F 6620 4D59 2070 726F 6772 616D

Using the 32-byte seed with the XOR algorithm produces the following encrypted result:

1F02 FFA7 ODCO 2872 C2CC 0869 A9F7 D657
OF3F F4F9 CFOD 1F02 84C6 3B04 F5A8 44D8

The result looks nothing like the original character string, yet the original data can be
recovered easily using the same algorithm and seed that changed it.

Y ou can use this method with entire sections of code within your application, expanding the
seed as needed.

Using Advanced Encryption Techniques

Y ou can make encryption even more complex, depending on how sophisticated you want to
make your application. For example:

Chapter 7 - Advanced Protection Techniques

Additional Strategies Using Data Words

- Use values returned by the Sentinel SuperPro key as seeds for a pseudo-random number
generator that generates seed encryption patterns.

- Use returned values to decrypt subroutines that decrypt code using an entirely different
encryption method and seed.

- Instead of using the XOR operator, multiply each byte by a seed to encrypt it. Divide by
the same seed to decrypt the data.
Multiplying an 8-bit value by an 8-bit value yields a 16-bit result. The result is double
the size of a data string produced with the XOR operator, but is also harder to crack. If
you use this technique, make sure your multiplier/divisor seed does not equal O.

Your local technical library should have several reference materials on encryption. Other
topics you may wish to investigate include codes, cryptology, and the National Security
Agency (NSA).

Additional Strategies Using Data Words

The following are some additiona strategies you can use with cells programmed as
read/write data words (access code 0) or read-only data words (access code 1).

- - Word 1 contains your unique, read-only developer 1D. This number cannot be
duplicated. Program your application to read this cell at least once.

- . Store machine code in datawords. This code can be read, checksummed, and executed
inaway that is verified by a different part of the application.

- - Program the application’s serial number into a data word. Read the cell and compare
the value to the correct seria number.

- - If you have multiple application packages, store the serial number for eachin a
separate data word.

- - Store the user’s name in data words as ASCI| bytes, then compare or display it.

- - Program data words with pseudo-random numbers that serve as part of a decryption
key used by the program to access secure information.

- - Program data words with pseudo-random numbers based on the program’s serial
number, then have the application verify them.

- - Usethe 56 programmable cells as one large, 896-bit bitmap. Various combinations of
bits can determine features or other responses, depending on your application.

SentinelSuperPro Programmer's Reference 75

Using Stepped Access

Using Stepped Access

The Sentinel SuperPro can be used to control access to features within a single program,
based on criteria you specify. Thisis called “ stepped access.”

Stepped accessis useful if you market multiple versions of an application. For example,
you may offer a basic package, an expanded package with some added features, and a
deluxe package with all features.

Using stepped access, the program would contain an array of conditions instructing the
system to activate different features based on the value returned by the Sentinel SuperPro.
By using a different algorithm descriptor for each package, you can control the features
implemented by the software.

Three agorithm descriptors will produce three different values for the same string. For the
string ABCD, for example, three a gorithm descriptors might produce the values 2610,
1830, and 6287.

Y our program would contain statements that produce different responses based on the
returned value, asillustrated by the following pseudo-code:

| F result EQUALS

2610 THEN enabl e basic features

1830 THEN enabl e basi c+texpanded feat ures
6287 THEN enabl e all features

If you have many steps or conditions, they can be stored in an array. The program would
check the array for a match with the string and return the number of the element matched.
This number then determines the features activated or the action taken by the program.

Querying Counter Words

76

Y ou can use the sproQuery() function to query a counter word to verify that it has been
counted down. This technique is useful in that it lets you seeif a pirateis trying to side-step
your counter, in an attempt to continue the demo condition indefinitely.

Counters used in this way must be two words long:
- Thefirst word has an access code of 2 (counter). Thisword must be an even-numbered
cell.

Chapter 7 - Advanced Protection Techniques

If the Hardware Key Is Not Attached

- The second word has an access code of 3 (algorithm/hidden). This word must be an odd-
numbered cell.

Y ou code your application to send a query to the counter/algorithm descriptor before doing
each decrement. A given query string should return a different response value after each
decrement, because the value in the first word (the counter) will have changed. If the query
returns the same value, the counter was not decremented, which may mean that a pirateis
attempting to circumvent your protection scheme.

If the Hardware Key Is Not Attached

If no key is connected to the computer, an error is returned by the sproFindFirstUnit()
function. If connection is established but the key islater removed, subsequent APl calls
return errors.

If your program detects that the Sentinel SuperPro key is not present, it is up to you to
decide what action to take. Possible actions include the following:

- Display a message and wait for the user to press akey. This method does not prevent
users from running the application, but makes doing so extremely annoying, especidly if
the application queries the hardware key frequently.

- Abort the application after a predetermined number of failed queries.

- Allow the application to appear asif it is functioning properly whilein fact it is not. (Be
very careful if you use this method. Less drastic actions should be considered first.)

- Display acritical error message and tell the user to contact your technical support
department.

These are just afew suggestions. Y ou can implement any combination of them to suit your
needs and your application.

All attempts have been made to guarantee error-free transmission. However, a small
possihility exists that an invalid response may be received even though the correct key is
attached. If you receive an invalid response, always retry the query one or more times. If
the response is consistently invalid, take the action you deem appropriate.

SentinelSuperPro Programmer's Reference 77

Appendix A - API Status Codes

Table A-1 describes the status codes the API library may return to your application.

For programming details specific to your language, refer to your language’s APL.TXT file
and the include files.

Note: Status information can be obtained only from system drivers. If alinked-in or DLL
driver is being used, these calls always return status 30 (API status unavailable).

Table A-1. API Status Codes

Status Code | Description
(Decimal)

0 success - The call completed successfully.

1 invalid function code - Y ou specified an invalid function code. See your language’'s
include file (e.g., SUPERPRO.H) for valid API function codes. Generally, this error
should not occur if you are using a Rainbow-provided interface to communicate with
the driver.

2 invalid packet - A checksum error was detected in the command packet, indicating
an internal inconsistency. The packet record or UNITINFO structure has not been
initialized or may have been tampered with. Generally, this error should not occur if
you are using a Rainbow-provided interface to communicate with the driver.

3 unit not found - Either sproFindFirstUnit() or sproFindNextUnit() could not find the
specified Sentinel SuperPro key. Make sure you are sending the correct developer ID.
This error is returned by other functionsif the key has disappeared (that is, has been
unplugged).

4 access denied - Y ou attempted to perform an illegal action on aword. For example,
you may have tried to read an algorithm/hidden word, write to alocked word, or
decrement aword that is not a data or counter word.

Table A-1. API Status Codes (continued)

SentinelSuperPro Programmer's Reference 78

Status Code | Description

(Decimal)

5 invalid memory address - Y ou specified an invalid Sentinel SuperPro memory
address. Valid addresses are 0-63 decimal (0-3F hex). Cells 0-7 are invalid for many
operations. Algorithm descriptors must be referenced by the first (even) address.

6 invalid access code - Y ou specified an invalid access code. The access code must be
0 (read/write data), 1 (read-only data), 2 (counter), or 3 (algorithm/hidden).

7 port is busy - The requested operation could not be completed because the port is
busy. This can happen if there is considerable printer activity, or if a unit on the port
is performing a write operation and is blocking the port. Try the function again.

8 write not ready - The write or decrement could not be performed dueto a
momentary lack of sufficient power. Try the operation again.

9 no port installed - No parallel ports could be found on the workstation.

10 already zero - You tried to decrement a counter or data word that already contains
the value 0. If you are using the counter to control demo program executions, this
condition may occur after the corresponding algorithm descriptor has been
reactivated with its activation password.

12 driver not installed - The system device driver was not installed or detected.
Communication to the unit was not possible. Verify that the device driver is properly
loaded.

13 communications error - The system device driver is having problems
communicating with the unit. Verify that the device driver is properly installed.

18 version not supported - The current system device driver is outdated. Update the
driver.

19 OS environment not supported - The operating system or environment is not
supported by the client library. Contact Technical Support.

20 guery too long - Y ou sent a query string longer than 56 characters. Send a shorter
string.

30 driver isbusy - The system driver is busy. Try the operation again.

31 port allocation failure - Failure to allocate a parallel port through the operating

system’s parallel port contention handler.

Table A-1. API Status Codes (continued)

SentinelSuperPro Programmer's Reference 79

Status Code | Description

(Decimal)

32 port release failure - Failure to release a previously allocated parallel port through
the operating system’s parallel port contention handler.

39 acquire port timeout - Failure to acquire access to a parallel port within the defined
time-out.

42 signal not supported - The particular machine does not support asignal line. For
example, an attempt may have been made to use the ACK line on a NEC 9800
computer.

57 init not called - The key is not initialized. Call the sprolnitialize() function before
calling the function that generated this error.

58 driver type not supported - The type of driver access, either direct I/O or system
driver, is not supported for the defined operating system and client library.

59 fail on driver comm - The client library failed on communicating with the Rainbow
system driver.

60 API status unavailable - The extended API Status function is unavailable.

255 invalid status - An invalid status code was returned.

80 Appendix A - API Status Codes

SentinelSuperPro Programmer's Reference

81

Appendix B - SPROX Error
Messages

Table B-1 describes the error messages that may appear when you run the SPROX driver
encryption utility described in Chapter 6.

Table B-1. SPROX Error Messages

SentinelSuperPro Programmer's Reference 82

Message

Description

B-00 : Not a SuperPro
Object file or corrupt file
=> <filename>

The input file you specified is not an object file, uses an unknown format, or
has been corrupted. Enter the name of the Sentinel SuperPro driver object
codefile.

B-01 : Unable to locate
file => <filename>

The input file you specified could not be found; check the pathname. This
error also appears if the file you specified is marked as read-only. Y ou may
also have left the input or output file name blank; file names must be
provided.

B-02 : Invalid encryption
method => <entry>

You entered a letter other than X, A, R, or S for the encryption method.
Type the first |etter of the method you want to use.

B-03 : Invalid encryption
seed => <value>

The encryption seed must be between 1 and 255. Enter avalid value.

B-04 : Range exceeds the
end of the file=>
<calculated range>

The starting byte plus the byte count exceeds the end of the input file. If you
want to encrypt to the end of the file, specify O for the byte count (/NO on the
command line).

B-05 : Invalid numeric
value => <entry>

At least one of the numbers you entered is not a number or exceeds the
maximum size for integers. Enter valid numbers within the displayed ranges.

B-06 : Invalid encryption
seed modifier =>
<value>

The encryption seed modifier must be between 0 and 255. Enter avalid
value. If you do not want the seed value changed during encryption, enter O.

B- 07 : Swap encryption
reguires an even number
of bytes => <vaue>

Y ou selected SWAP encryption, but the byte count you entered is odd. The
second number in the encryption range must be even. Change the byte count
or select a different encryption method.

SentinelSuperPro Programmer's Reference

83

Table B-1. SPROX Error Messages (continued)

Message

Description

B-08 : Filetoo big =>
<filename>

The object code file you specified is too large to encrypt with SPROX. This
tool is designed to encrypt the Sentinel SuperPro driver only — it isnot a
general-use encryption tool. Enter the correct file name.

B-09 : Unable to create
file => <filename>

SPROX could not create the specified output file. Make sure the pathnameis
valid and any directories specified in the pathname already exist. Also, make
sure you have adequate disk space available.

B-10 : Options
{IOJ/M /S, /A,/B,IN}
also require option /I

If you specify any of these parameters on the SPROX command line, you
must also specify the input file name. Reenter the command line and include
/I followed by the name of the driver file to be encrypted. Alternatively, omit

(Input File) all of the parameters and run SPROX interactively.

B-11: Output file The file name specified (or defaulted to) by /O aready exists, but you did not
already exists => enter /V (overwrite) on the command line. To replace the existing file,
<filename> reenter the command line with /V. Alternatively, select a new output file

name.

B-12 : Process complete,
but unable to create Log
File => <filename>

SPROX could not create the log file. Usually, thisindicates that the log file
name is not avalid DOS pathname. Make sure you specify avalid pathname
using a directory that already exists. Also, make sure you enter the file name
directly after /L, with no intervening punctuation.

B-13 : Process complete,
but error writing to Log
File => <filename>

SPROX could not write to the log file. This may mean that the file is marked
as read-only, or that you do are out of disk space.

B-14 : Not a SuperPro
Object file or corrupt file
=> <filename>

The input file you specified is not an object file, uses an unknown format, or
has been corrupted. Enter the name of the Sentinel SuperPro driver object
codefile.

B-15 : Range requires 2
numbers separated by a
space, Ex: 42 1001

You did not enter two numbers separated by a space. Enter the first byte to
encrypt, a space, then the byte count. Do not enter letters or punctuation.
Y ou can omit the second number if you want to encrypt to the end of thefile.

B-16 : Invalid starting
offset for encryption
range => <entry>

The first number you entered for the encryption range is not within the valid
range displayed. Enter a number between O (the first byte in the file) and the
second number shown in the range (the last byte in the file).

84

Appendix B - SPROX Error Messages

Table B-1. SPROX Error Messages (continued)

Message

Description

B-17 : Invalid number of
bytes for encryption
range => <entry>

The second number you entered for the encryption range is not within the
valid range displayed. Enter a number between 0 and the second number
shown in the range (the last byte in the file). Note that using O to represent
the end of the file is recommended, as you will not have to modify your code
if the driver size changes.

B-18 : Swap encryption
must start before last
byte of file

Y ou specified SWAP encryption and a starting byte that is the last byte of
the file. SWAP encryption requires a minimum of two bytes. Select a
different encryption method, or specify an earlier start byte.

B-19: Not a SuperPro
Object file or corrupt file
=> <filename>

The input file you specified is not an object file, uses an unknown format, or
has been corrupted. Enter the name of the Sentinel SuperPro driver object
codefile.

SentinelSuperPro Programmer's Reference 85

86

Appendix B - SPROX Error Messages

Appendix C. Programming
Worksheet

Below is aworksheet you can photocopy and use as an aid while designing your protection
scheme and programming your keys.

00

08

10

18

20

28

30

Rainbow Technologies, Inc.
SentinelSuperPro Programming Worksheet

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

*kkk SN *kkk DI *kkk OP *kkk OP *kkk WP *kkk RW *kkk RW *kkk RW

SentinelSuperPro Programmer's Reference 87

38

88

Appendix C - Programming Worksheet

SentinelSuperPro Programmer's Reference

89

Appendix D - Quick Reference
Tables

Table D-1. Restricted Cells

Cell(s) Contents Readable?

0 Randomly assigned serial number Yes

1 Developer 1D; unique to your company/product Yes

2 Overwrite password word 1 No

3 Overwrite password word 2 No

4 Write password No

5-7 Reserved for future use by Rainbow No

Table D-2. Access Codes

Code Description

0 Read/write data word. Y our application can read the cell and, if the write
password is supplied, modify its contents.

1 Read-only (locked) data word. Y our application can read the cell but
cannot change it without the overwrite password.

2 Counter word. The cell contains a value that your application can
decrement using the write password. The value cannot be reset without the
overwrite password.

3 L ocked and hidden/algorithm word. Y our application cannot read the

cell’svalue, and cannot change it without the overwrite password.

SentinelSuperPro Programmer's Reference 90

Table D-3. Algorithm Word Values

Word 1 Word 2
Enhanced Engine Enhanced Engine
Disabled* Enabled*
Algo Inactive | 0000-FFFFh 0000 to 3FFFh 4000 to 7FFFh
Algo Active 0000-FFFFh 8000 to BFFFh C000 to FFFFh

! Enhanced algorithm engine (64-bit) for maximum security.

Table D-4. Cell Types

Cell Type Access Code Description

> 0 Undefined

AA 3 Active Algorithm
AH 3 Algorithm Half

AP 3 Algorithm Password
CA 2 Algorithm Counter Word
Cw 2 Counter Word

DI 1 Developer ID

DL 1 Locked Data Word
DwW 0 Data Word

A 3 Inactive Algorithm
OP 3 Overwrite Password
RwW 3 Reserved Word

SN 1 Serial Number

WP 3 Write Password

Table D-5. Valid Addresses For Algorithm Words

SentinelSuperPro Programmer's Reference

Algorithm Method Valid Starting Cell Addresses

Algorithm 08, OA, 0C, OE, 10, 12, 14, 16, 18,

2 cdls algo, algo) 1A, 1C, 1E, 20, 22, 24, 26, 28, 2A
2C, 2E, 30, 32, 34, 36, 38, 3A, 3C
3E

Algorithm with password 08, 0C, 10, 14, 18, 1C 20, 24, 28,

(4 cells: algo, algo, AP, AP) 2C, 30, 34, 38, 3C

Algorithm with counter 0B, 13, 1B, 23, 2B, 33, 3B

(3 cells: CA, ago, ago)

Algorithm with two counters 0A, 12, 1A, 22, 2A, 32, 3A

(4 cells: CA, CA, dgo, ago)

Algorithm with password and 0B, 13, 1B, 23, 2B, 33, 3B

counter

(5 cells: CA, ago, ago, AP, AP)

Algorithm with password andtwo | 0A, 12, 1A, 22, 2A, 32, 3A

counters

(6 cells: CA, CA, dgo, ago, AP,

AP)

143

Table D-6. Advanced Editor Item Types

Iltem Type

Description

Algorithm
(2 cells)

A simple algorithm descriptor. Use this type if you want to scramble
an input string but do not want an associated counter or activation
password.

Algorithm with
Counter
(3 cdls)

An agorithm descriptor that has a counter associated with it.
Usually, thisitem typeis used to limit the number of times a demo
program can be executed.

Algorithm with
Counter and
Password
(5cdls)

An agorithm descriptor that has both a counter and a password
associated with it. Use thistypeif (1) the algorithm isto be
deactivated when the counter reaches 0, and (2) the user must input
a password to get the application to run initially, or to reactivate it
after the counter reaches 0.

Table D-6. Advanced Editor Item Types

Appendix D - Quick Reference Tables

Iltem Type

Description

Algorithm with
Password
(4 cels)

An algorithm descriptor that has a password associated with it. Use
this type if you want the user to enter a password to make the
application run initially.

Algorithm with Two
Counters
(4 cels)

An algorithm descriptor that has two counters associated with it.
The first counter that reaches 0 deactivates the algorithm, which
usually stops your application from executing properly.

Algorithm with Two
Counters and
Password

(6 cells)

An algorithm descriptor that has two counters and a password. Use
thistypeif (1) the algorithm is to be deactivated when either counter
reaches 0, and (2) the user must input a password to make the
application run initially, or to reactivate it after it is deactivated.

Algorithm Word
(1 cell)

A cell that will be used as half of an algorithm descriptor. Use this
typeif you want the user or installer to supply the second half of the
algorithm descriptor in the field. Make sure you are aware of all
rules governing algorithm descriptor values and location.

Counter A cell that contains avalue you can decrement. Use this type to limit

(1 cdl) the number of times a demo program can be run, or to limit the
number of times any particular operation is performed.

Data Word A cell that contains a data value your application can test (and

(1 cdl) change) during execution. For example, you might store a serial
number or feature control code.

Locked DataWord | A cell that contains a read-only data value your application can test

(1 cdl) during execution. Y our application can read the stored data but

cannot change it without the overwrite password.

SentinelSuperPro Programmer's Reference 93

Table D-7. APl Functions

Function

Description

sproActivateAlgorithm()

Activates an inactive algorithm descriptor so that it can be used
by the sproQuery() function.

sproCfgLibParams()

Lets you configure various aspects of the Sentinel SuperPro
interface.

sproDecrement() Decrements a counter word by 1. If the counter is associated
with an algorithm descriptor, decrementing the counter to O
deactivates the algorithm.

sproExtendedRead() Reads the value and access code of any unhidden word in the
key.

sproFindFirstUnit() Searches all attached keys for a specified developer ID.

sproFindNextUnit() Searches for the next key with the same developer ID.

sproGetVersion() Returns the Sentinel SuperPro driver’s version number.

sprolnitialize() Performs any required initialization. This function must be
called once before any other API function is called.

sproOverwrite() Changes the value and/or access code of any word except the
reserved words in cells O through 7.

sproQuery() Sends a data string to the key, scrambles it using a specified
algorithm descriptor, and returns the scrambled string to the
application.

sproRead() Reads the value of any unhidden word in the key.

sprowrite() Changes the value and/or access code of any word with an
access code of O (read/write data).

Note: For OS2, Windows NT, and Windows 95/98, each function name is preceded by

RNBO.

143

Appendix D - Quick Reference Tables

SentinelSuperPro Programmer's Reference

95

A

AA cdl type, 14
access codes, 10, 11
activation passwords, 68
querying, 70
Active Algorithm cell type, 14
activel/inactive bit, 10, 21
Advanced Editor, 39
changing cells, 42
choosing hex or decimal, 40
clearing cells, 43
Delete Item, 43
Edit Item, 42
Evaluate API, 44
item types, 40
key matrix, 40
programming cells, 41
querying the key, 44
Update Key, 43
using API calls, 44
AH cell type, 15
algorithm activation, 5, 6
example, 68
Algorithm Counter Word cell type, 16
algorithm descriptors, 9
activelinactive bit, 10
Algorithm Half cell type, 15
Algorithm Password cell type, 15
algorithms
activating an inactive algorithm, 5
enabling enhanced algorithm engine, 21
placement of algo with counter, 23
placement of algo with password, 23

SentinelSuperPro Programmer's Reference

Index

placement of algo with password and counter, 24
placement of ago with password and two
counters, 24
placement of ago with two counters, 23
placement of simple algo, 23
setting active or inactive, 21
using two counters, 16
using with counters, 65
value in second word, 21
already zero error, 30, 66
AP cédll type, 15
API, 1
return codes, 79
API cdls
sproActivateAlgorithm, 29
sproCfgLibParams, 29
sproDecrement, 30
sproExtendedRead, 31
sproFindFirstUnit, 31
sproFindNextUnit, 32
sproFormatPacket, 33
sproGetVersion, 33
sprolnitialize, 34
sproOverwrite, 34
sproQuery, 35
sproRead, 36
sproWrite, 37
summary of calls, 28
Application Program Interface. See API

B

bulletin board service, xii

96

CA cell type, 16
cell types, 10, 12
Active Algorithm, 14
Algorithm Counter Word, 16
Algorithm Half, 15
Algorithm Password, 15
Counter Word, 17
Data Word, 18
Developer ID, 18
Inactive Algorithm, 19
Locked Data Word, 18
Overwrite Password, 19
Reserved Word, 20
Serial Number, 20
Undefined, 14
Write Password, 21
cell values, 10, 12
ChkSum routine, 57
Counter Word cell type, 17
counter words, 9
counters
querying, 77
using for demo program control, 65, 66
using to control demo programs, 6
CW cdl type, 17

D

Data Word cell type, 18
datawords, 9
example, 61
debuggers
protection against, 71
decrypting the driver from your application, 56
demo program control, 6
example, 66
demo programs
counting executions, 30
counting number of executions, 65
developer ID, 76
Developer ID cdl type, 18
devel oper's guide, xi
DI cell type, 18
DL cell type, 18

SentinelSuperPro Programmer's Reference

driver

encrypting the driver, 7
driver encryption, 7

encryption and decryption macros, 56
DW cdl type, 18

E

encrypting your application
example, 63

encryption techniques, 73
advanced, 75

enhanced algorithm engine, 10, 22
enabling and disabling, 21

Evaluate API, 44

exclusive OR logical operator, 73

F

FCC notice, v
Fujitsu
configuring for an FMR system, 29
H
hardware key, 1
if missing, 77
programmable memory, 9

restricted cells, 10
hexadecimal format, xii

1A cell type, 19

Inactive Algorithm cell type, 19
installation, Xi

item types, 40

L
Locked Data Word cell type, 18

M

memory cells

97

cell values, 12
modul o operations, xii
multiple applications sharing one key, 7, 71

N

NEC
configuring for aNEC system, 29

O

OP cell type, 19

overwrite password, 4, 11
useinfield, 4, 34

Overwrite Password cell type, 19

P

packet records, 27
format, 33
invalid, 32
passwords, 4
profile, 39
programming cells
address restrictions, 10
with the Advanced Editor, 41
programming keys
restricted cells, 10
programming worksheet, 87
protection techniques
frequent queries, 60
hiding calls to the key, 72
inserting extra data, 72
obstructing debuggers, 71
scattering lock components, 60
stepped access, 76
using encryption, 73
using returned values as variables, 64

Q

queries
example, 62
length, 36
maximum length, 35

143

of activation passwords, 70
of counter words, 77
sending frequently, 60
using sproQuery, 35
query, 5
querying the key
with the Advanced Editor, 44

R

reprogramming cellsin thefield, 6
reserved cells, 4

Reserved Word cell type, 20
restricted cells, 10

RW cdll type, 20

Sentinel SAFE, 6
Sentinel Shell, xi, 6
SentinelWizard, xi, 2
Advanced Editor, 39
Serial Number cell type, 20
sharing one key, 70
shipping and handling, xi
SN cell type, 20
software locks, 3
hiding, 72
sproActivateAlgorithm, 29
sproCfgLibParams, 29
SPROCRYP, 48
sproDecrement, 30
sproExtendedRead, 31
sproFindFirstUnit, 31
sproFindNextUnit, 32
sproFormatPacket, 33
sproGetVersion, 33
sprolnitialize, 34
sproOverwrite, 34
sproQuery, 35
sproRead, 36
sproWrite, 37
SPROX, 48
command line examples, 53
command line parameters, 51

Index

command line syntax, 50

encryption methods, 49

error messages, 83

running interactively, 53

running multiple times, 49
stepped access, 76

T

technical support
telephone number, Xii
troubleshooting, xi

SentinelSuperPro Programmer's Reference

U

Undefined cell type, 14
UNITINFO record, 27
invalid, 32
Update Key button, 43
using API cals
from the Advanced Editor, 44

\W

WP cell type, 21
write password, 4, 11
Write Password cell type, 21

99

