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5.4 DERIVATIVE RANDOM PROCESSES

- The derivative of any particular sample function x(¢) from an arbitrary random process
{x(®)} is defined by

i) = PO _ i [x—(’ﬁ)l’i@] (5.144)

dt e—0 &

Existence of this limit may occur in different ways. The derivative x(¢) is said to exist

" 1. In the usual sense if the limit exists for all functions x(¢) in {x(9)}.
" 2. In the mean square sense if

limE[
e—0

For a stationary random process, a necessary and sufficient condition for x(z) to exist
in the mean square sense is that its autocorrelation function R,.(t) should have
derivatives of order up to 2; that is, R/ () and R;x must exist [Ref. 51.

x(t + &)—x(7) ()

2
} =0 (5.145)

5.4.1 Correlation Functions

Consider the following derivative functions, which are assumed to be well defined:

T ) 2R (T
R =2l) g () - helD
2, (5.146)

By definition, for stationary random data,
Ry (7) = Elx()x(z + 7))
Rys(7) = E[x(0)i(s +7)]
Ryi(7) = Ex()x(z + )]

Ex(t—7)x(t)]
Efx(r—1)x(0)] (5.147)

E[x(r—1)%(1)]

Now
Ra®) = 5o EEx(0x(t+ 7)) = Ex(0)(e + 7)) = Rl (5.148)
Also,
Rl (2) = S Elx(t—0)x(1)] = ~E(—2)3(0)] = ~Ruc)
Hence,

R,,(0) = Rs(0) = —Rix(0) =0 (5:149)
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since R’ (0) equals the positive and negative of the same quantity. The corresponding
R,(0) is a maximum value of R,,(7). This proves that for stationary random data

Ex(H)x(t)] =0 (5.150)

In words, at any z, Equation (5.150) indicates that the derivative {%(¢)} for
stationary random data {x(¢)} is equally likely to be positive or negative. Equa-
tion (5.148) states that the derivative R, () of the autocorrelation function R (1) with
respect to 7 is the same as the cross-correlation function between {x(2)} and {x(¢)}. A
maximum value for the autocorrelation function R,,(t) corresponds to a zero crossing
for its derivative R’ (¢), which becomes a zero crossing for the cross-correlation
function between {x(#)} and {x(z)}. This crossing of zero by R’ (t) will be with
negative slope, that is

R_(0-)>0 and R,(0+)<0 (5.151)

as can be seen from the picture in Figure 5.9. In practice, determining the location
where zero crossings will occur is usually easier than determining the location of
maximum values.

g \] 2 v < T

(c)

Figure 5.9 Illustration of derivatives of autocorrelation functions. (@) Original function. (b) First
derivative. (c) Second derivative.
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It will now be shown that R/ () is an odd function of T corresponding to Ry(t)
being an even function of 1. By definition

Rue(7) = Elx(t)x(t—)] = Elx(s-+ )x()] (5.152)
Hence,
R (~z) = iE[x(t—I-'c) (1)) = EJi(t+ Ox(0)] = Rex (1) - (5.153)
But, as shown earlier, Rix(z) = —R. (¢). Hence Equation (5.153) becomes
R (=1) = —R._(x) (5.154)

This proves that R',,(7) is an odd function of .
The second derivative gives

R(6) = 5 Rol®) = 5 Rsls) = L Bla(e—c)i(o) 5155
= —El(t-0)i(0)] = —Rix(r)
Also,
R) = iRl = RO = LHRer0)
= Ef()(1+ ) = Ru(o)
One can also verify directly that R (t) is an even function of t, namely,
R, (—7) =R, (7) (5.157)
At 1=0, one obtains
E[ ()] = Rix(0) = —Rui(0)—R.,(0) (5.158)
As shown earlier,
Rus(c) = %Rxx('c) —R.(x) (5.159)

Typical plots for R,,(t), R, (%), and R, (t) are drawn in Figure 5.9, based on a sine
wave process where
Ry () = X cos 2mfyT
R, (t) = —X(2nfy)sin 2nfyt - (5.160)

"

R, (1) = =X (2nfp)*cos 2nfyr
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The results given above can be extended to higher order derivatives. For example,

Rig(t) = ;—TR,-O-C(T) — _R"(x) (5.161)
Rix(t) = — %Rﬁg(t) — R (x) (5.162)

At T =0, one obtains
E[#(#)] = Rx(0) = R/(0) (5.163)

Thus, knowledge of R,(t) and its successive derivatives can enable one to state the
properties for autocorrelation and cross-correlation functions between {x(¢)} and its
successive derivatives {x(¢)}, {%(¢)}, and so on.

5.4.2 Spectral Density Functions

It is easy to derive corresponding properties for the autospectral and cross-spectral
density functions between {x(#)} and its successive derivatives {x(z) } and {X(r)}. Let

X(f) = # [x(t)] = Fourier transform[x(z)] (5.164)

Then
F ()] = (2f)X(F) (5.165)
FL(t)] = —(2nf)*X(f) (5.166)

From Equations (5.66) and (5.67), it follows directly that

Gu(f) = j(2nf)Gx(f) (5.167)
Gu(f) = (27f)*Gua(f) (5.168)
Gu(f) = j(2nf)’ Gue(f) (5.169)
G(f) = (2nf)* Gue(f) (5.170)

and so on. These formulas are the same with one-sided G’s replaced by the
corresponding two-sided S’s.

These results can also be derived from the Wiener—Khincnine relations of
Equation (5.28). Start with the basic relation

Ru(7) = Joo Sec(f) e df (5.171)

Then successive derivatives will be
R (1) =j Joo (2nf)Su(f) 7 df | (5.172)
R () =— J°° 2nf)?Su(f)e? P df (5.173)
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Re(t) =—j Jm (2nf)’Se( f) eV df (5.174)
RUG = | Cm)isatne iy (5.175)

The Wiener-Khinchine relations, together with previous formulas in Section 5.4.1,
show that these four derivative expressions are the same as

R, (v) = Rui(1) = Jm Sei ()™ af (5.176)
R (1) = —Ru(t) = _‘j’&, Sulf)e™™ af (5.177)
Ry(t) = —Ru(t) = — J;;o Su(f)e? af (5.178)

R (t) = Ru(r) = Ji:ﬁ(f)d’”f’df (5.179)

Corresponding terms in the last eight formulas yield Equations (5.167)—(5.170).

5.5 LEVEL CROSSINGS AND PEAK VALUES

This section addresses the probability functions for certain characteristics of random
data including

1. Expected number of level crossings per unit time

2. Peak probability functions for narrow bandwidth data
3. Expected number and spacing of positive peaks

4. Peak probability functions for wide bandwidth data

Most of these results were originally derived by Rice in Ref. 6, and various
extensions of these matters are presented in Refs 6-10.

5.5.1 Expected Number of Level Crossings per Unit Time

Consider a stationary random record x(¢) that has the time derivative v(r) = %(z). Let
pla, B) represent the joint probability density function of x(¢) and v(¢) at x(¢¥) = o and
v(¢) =B. By definition, for all ¢,

p(a, B)AuAB ~ Probla < x(t) < a+Axand B < v(z) < B+ AB] (5.180)

In words, p(a, B) AxAR estimates the probability over all time that x(¢) lies in the
interval [o, o« + Aca] when its derivative v(¢) is in the interval [, B + AB]. For unit
total time, when AR is negligible compared to 8, the value of v(¢) is essentially .

To find the expected number of crossings of x(#) through the interval [, & + Aa],
the amount of time that x(¢) is inside the interval should be divided by the time required
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to cross the interval. If 73 is the crossing time for a particular derivative B, then

; Aa
B =14

18l
where the absolute value of 8 is used because the crossing time must be a positive

quantity. Hence, the expected number of passages of x(#) per unit time through the
interval [o, o0 + Ax] for a given value of v(r)=g is )

1—’@‘#’%@5’5 — |Blp(e, B)AB (5.182)

(5.181)

In the limit as AB — 0, the total expected number of crossings of x(#) per unit time
through the level x(#) = « for all possible values of 8 is found by

No= [ 16 p)e (5.18)

This represents the expected number of crossings of the level o with both positive
and negative slopes as shown in Figure 5.10.

The expected number of zeros of x(z) per unit time is found by the number of
crossings of the level x(?) = 0 with both positive and negative slopes. This is givenby
N, when o =0, namely,

il

00
No =J 1Blp(0, B)ap (5.184)
. —00

This value of Ny can be interpreted as twice the “apparent frequency” of the record.
" For example, if the record were a sine wave of frequency fo Hz, then Ny would be 2fp
zeros per second (e.g., a 60 Hz sine wave has 120 zeros per second). For random data,
the situation is more complicated, but still a knowledge of Ny, together with other
quantities, helps to characterize the particular random data. The above formulas apply
to arbitrary Gaussian or non-Gaussian random data.

For an arbitrary random record x(?) and its derivative v(t) = %(¢) from a zero mean
value stationary random process, it follows from Equations (5.147), (5.150) and (5.158)

Figure 5.10 llustration of crossings of level a with positive and negative slopes.
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that the variances and covariance are

o? = E[?(1)] = Rw(0) (5.185)
o? = EpA(1)] = R,,(0) = —R._(0) (5.186)
0w =ERx(t)v(t)] =0 (5.187)
From Equations (5.171) and (5.173), it also follows that
2= st = | eulrrar (5.188)
= | ersana = ewrenar 159

If x(¢) and v(z) are statistically independent with p(e, B) = p(«)g(B), then Equa-
tions (5.183) and (5.184) show that
Ny _ p()
— == 5.190
No p(0) ( )
regardless of the nature of p(e) or g(B). The formulas in Equations (5.18)—(5.19) apply
to stationary random data with any joint probability density function.

5.5.1.1 Gaussian Data

Assume now that x(f) and its derivative v(¢) = x(¢) have zero mean values and form a
joint Gaussian distribution with the above variances and zero covariance. Then, the
joint probability density function

p(a, B) = p(«)q(B) (5.191)
with
(o) = <U\1/2_n> exp <— 2‘%) (5.192)

Substitution of Equation (5.190) into (5.183) now shows for Gaussian data that

exp(—o?/2a2) [* B2 1 (o, o?
N e (=)= (e~ 57) 19

X

In particular, for « =0, one obtains the simple formula

1 /0,

No== <—> - (5_.195)

T\ Oy



