Adding some 6% of gain the reference circuit would still require very stable resistors, not to increase the drift. Added noise would be the least problem.
It it is just about getting a long term stable reference the old type LTZ1000 reference may be the better choice, maybe with a reduced temperature.
So far the limited reports on the ADR1000 are showing very low noise, but also still some drift. There is still some hope to improve on the drift with burn in or annealing, but I would not absolutely count on this. The advantage of the ADR1000 is more that it can get away with lesser grade resistors and still get good stability. With really good resistors the LTZ1000 may still be more stable.
Yes you might be right. But with the limited dataset I still plane on experimenting. I have treated myself with a set of VHP101 for a LTZ (70k,120,13k/1k) and the ADR (acc to the Datasheet). Plane is to put the LTZ in the mix with the ADR in with the same layout and test them side by side. This will take some time though as my ADR resistors are scheduled for march…goal is to compare drift and tempco. This will be done against my well aged 732a so may in a year from now I will have somewhat meaningful results, after that I will have a look at the A9 board project again I think.
Hello Max,
unfortunately, reading every speculation from him, always the complement seems to be correct. No own experience from his own experiments, as far as one can deduce.
A divider being a few % off from "1" is extremely stable.. simply calculate the total differential! A 6% amplification should attenuate all drifts of the implemented resistors by about these 6%. I.e. a resistors T.C. of 2ppm/K will be attenuated to 0.1ppm/K of amplification drift. 5ppm/yr. => 0.3ppm/yr.
Added noise by an OpAmp IS the most severe problem for the ADR1000, as I have demonstrated upwards in this thread, in conjunction with the ADA4522 @ x1 amplification!! Any additional buffer amp might spoil the superior noise performance of the ADR1000. Therefore the easy replacement of the FW is the best option.. if the 3458A circuit really benefits from the low noise ADR.
The long-term stability of the ADR1000 MIGHT initially be worse compared to the LTZ1000. Only branadic has presented so far a single drift result @10V.
My single sample experiment, measured directly at the raw ADR1000 output, w/o to 10V amplification, shows no remarkable drift so far after 500h. That's also no reliable result at all. Others in the background reported that the ADR needs a longer burn-in than the LTZ. So the speculation which chip is more stable, is at the moment completely baseless and speculative.
Spoiler alert: CERN obviously uses the ADR based circuit as an improved 10mA precision source!
Lower oven-temperature is always a good way to improve timely stability, see P.J. Spreadbury publication from 1990. Chose about 55 .. 60°C in any case. Don't use the ADRs datasheet values for best performance of the ADR. See hints in my post above.
The T.C. of the circuit for both chips have to be trimmed to near zero. There's a lot of potential on the 3458A's LTZ1000A board. Mine has about 0.2ppm/K, half of the overall temperature drift of my instrument.
Use that infamous 200k resistor for T.C. trimming. (or not at all).
The LTZ1000A inside my 3458A drifted -2ppm over about 9 years only, due to the reduced oven temperature, but mainly because the 3458A is running only sparsely. Again, see Spreadbury.
My ADR #3 runs at about 55°C, just at its determined zero TC point of the Reference Amplifier. Simple thing.
And no, the LTZ1000 does not necessarily need more stable resistors. The timely stability of the circuit is mainly determined by the chip itself, the T.C. drift can be trimmed to near zero. Exactly the same goes for the ADR. So, please, no Vodoo stuff here, again. The ADR has much better noise performance, definitely, and that's the main reason to go for it.
The 3458A is no voltage reference, by all means. Therefore, I might exchange its very stable LTZ1000A by the ADR1000 some day, using the very same PCB with different resistors, and adding Andreas capacitors, for higher noise immunity.
Frank