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satisfied. Result II then follows from Result I. In practice, these conditions are
usually satisfied, justifying the assumption of ergodicity.

5.3.3 Gaussian Random Processes

The formal definition of a Gaussian random process is as follows. A random process
{xx(£)} is said to be a Gaussian random process if, for every set of fixed times {¢,,}, the
random variables x;(¢,) follow a multidimensional normal distribution as defined by
Equation (3.63). Gaussian random processes are quite prevalent in physical problems
and often may be mathematically predicted by the multidimensional central limit
theorem. Also, it can be shown that if a Gaussian process undergoes a linear
transformation, then the output will still be a Gaussian process. This property is quite
important in various theoretical and practical applications of random process theory.

Consider a time history x(¢), which is a sample function from an ergodic Gaussian
random process with a zeromean value. Note that the index kisnolongerneeded because
the properties of any one sample function will be representative of all other sample
functions. From the ergodic property, the behavior of x(¢) over along period of time will
exhibit the same statistical characteristics as corresponding ensemble averages at
various fixed times. As a consequence, it follows that the probability density function
associated with the instantaneous values of x(z) that will occur over a long time interval
is given by the Gaussian probability density function with zero mean value, as follows:

p(x) = (o,V2m) e~ 12 (5.124)

The variance o-i when x(z) has a zero mean is determined by

= E[x*(t)] = Jmfp(x)dx independent of

T

1
ok L x*(t)dr for large T (5.125)

:J xx(f)df 2J See(f)df = ronx(f)df

Thus, the Gaussian probability density function p(x) is completely characterized
through a knowledge of S,,.(f) or Gy(f) since they alone determine o. This important
result places a knowledge of S,.(f) or G (f) at the forefront of much work in the
analysis of random records. It should be noted that no restriction is placed on the shape
of the autospectral density function or its associated autocorrelation function.

If the mean value of x(f) is not zero, then the underlying probability density
function is given by the general Gaussian formula

p(x) = (0xV/2m) e )12 (5.126)
where the mean value
(o.0]
= Elx(z)] = J xp(x)dx  independent of ¢ ,
r ' (5.127)

~ lJ x(2)dt for large T
T Jo
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“and the variance

2 = E[(x(t)—p,)"] = ER (0] 15 (5.128)

Assume that {x(¢)} is a stationary Gaussian random process where the index & 1s
omitted for simplicity in notation. Consider the two random variables x; = x(¢) and
%, =x(t + 7) at an arbitrary pair of fixed times ¢ and ¢ + 7. Assume that x; and xp
follow a two-dimensional (joint) Gaussian distribution with zero means and equal
variances . By definition, then

o? = E[2(0)] = EW(+7)] = r_o 2p(x)dx (5.129)

Rua(t) = Elx(t)x(t + 7)) = pus(2)0? = ﬂ nopl, w)dady  (5.130)

The quantity p.(7) is the correlation coefficient function of Equation (5.16) for
Crx, (t) = Ryy(t) and oy, = 0, = 0%, namely,

‘Rxx('c)

2
o

Prel(T) = (5.131)

Letting p = px(7) and u =0, the joint Gaussian probability density function is given
by

plon ) = ro2 T oxp g (At )| (6132

All properties developed in Section 3.3 apply to joint Gaussian random processes at
any set of fixed times.

Consider four random variables x;, x5, 3, X4, With zero mean values, which follow a
four-dimensional Gaussian distribution. From Equation (3.73),

Efx1xx3%4] = Elxi%2| E[xsxs] + Elx %3] E[x2x4] + Elx104] E[ 2. %3] (5.133)

In particular, let x; = x(u), X2 =y(u + 7), x3 = x(v), x4 = y(v + 7), and let R,,() be the
stationary cross-correlation function given by

Rey(z) = Efx(e)y(t +2)] (5.134)

It now follows from Equation (5.133) that

Elx(u)y(u +7)x(v)y(v + 7) = R%,(v) + Rex (v—1t)Ryy (v—11)

(5.135)
+ Ry (V=14 + 7) Ry (v—14—T)

This result will be used later in Equation (8.99).




