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Introduction

After almost one century of research into flicker noise, we still do not know as much about it as we would
like to: we do not know enough about its origin, nor do we know everything about its behaviour, nor has
the last word about good methods to fight it been spoken: effectively, we still are like Alice standing in
front of the rabbit hole, before she enters the Wonderland . . .

So the intent of this chapter is to give the reader an idea of what flicker noise is, how it is connected
to other low-frequency noise effects, and what today’s designers do to fight it. This chapter will just give
a broad overview, focusing on concepts and design philosophy, providing just as much mathematics as is
strictly necessary. Interested readers will have to follow the literature references to find out details about
mathematics and design.

In this chapter, a section on the nature of flicker noise is followed by a section on switched-capacitor
techniques and noise sampling. Three more sections deal with the three main techniques used against
flicker noise, which are large-scale excitation, chopping, and correlated double sampling. An appendix
contains information on how to simulate flicker noise in Matlab, and finally, a short annotaded literature
list is given, inviting the reader to find out by herself or himself how deep the rabbit hole really is.

1 What is flicker noise?

Flicker noise, or 1/f -noise, seems to be so easy to define: it is noise whose power spectral density has the
form

S(f) = S(1) · 1
fx

where x typically is around 1. In most circuits, this means that white noise dominates above a certain
frequency, and we will see a behaviour as in Fig. 1.

While this definition looks so simple, it immediately begs the question: does flicker noise really go
down all the way to f = 0? And what would such behaviour actually mean?

One thing this would mean is that flicker noise would then have infinite power over a finite frequency
band, because

∫ 1

0

S(1)
1
fx

df → ∞

The problem we are facing with flicker noise is actually rather simple: we are looking at it now in the
frequency domain only, without thinking about what integrating from f = 0 upwards actually means: It
means that we are looking at a process that takes an infinite time to happen, and this is not realistic
at all. Looking at spectra is normally very helpful for understanding amplifiers, filters, regulators and
the like, but we should never forget that the time domain and the frequency domain are only equivalent
mathematically, but in reality, signals are varying in time, and frequency is only an abstract, if helpful,
tool we use for our convenience [1].
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Figure 1: Power spectral density of white noise overlaid by flicker noise.

Figure 2: Flicker noise generated from white noise.

1.1 The nature of flicker noise

Looking at processes generating flicker noise in the time domain instead of the frequency domain gives
us much more insight into the nature of flicker noise. We have no problems finding flickering systems in
nature and science, it seems that flicker noise is the rule rather than the exception. It can be observed
in systems like vacuum tubes, diodes, transistors, thin films, quartz oscillators, the average seasonal
temperature, the annual amount of rain fall, the rate of traffic flow, the loudness and pitch of music, the
pressure in lakes, search engine hits on the Internet, and so on [2, 3].

Keshner showed in 1982 [2] that a system flickers when it has memories whose time constants are
distributed evenly over logarithmic time. Therefore, an easy way to produce flicker noise in simulation
is to concatenate many stages of first-order filters with one pole and one zero each, and let it filter white
noise, as shown in Fig. 2 [2], where four first-order filters are used per decade. The number of filters per
decade decide how far the simulated 1/f curve deviates from the ideal curve.

The poles and zeros must be spaced evenly on a logarithmic scale. For the simulations shown in this
chapter, we have used the spacing shown in Fig. 3, as described in the Appendix.

This system gives the very nice 1/f behaviour in Fig. 1, and it is amazing to see that the number of
memory blocks needed to make flicker noise is relatively small. According to Bloom [4], MOSFETs show
flicker noise behaviour from, e.g., 10−8 Hz up to 105 Hz, which would require only 25 memory cells with
time constants distributed evenly on a logarithmic scale.

Making simulations with this model of flicker noise, we soon find funny effects. Fig. 4 shows, for
example, the variance of the output signal of the circuit in Fig. 2 as a function of time.
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Figure 3: Transfer function of the flicker noise generator.

It is immediately visible that this variance rises with log t! In other words, the random signal we
are looking at is not stationary. The theoretical consequences of this have been discussed in [2], and
measurements of practical problems coming from this non-stationarity have been shown in [5], so the
non-stationarity is not a problem of our model, but an inherent feature of flicker noise: it means that if
you have a system with long time constants in its memories, then that system takes a long time to reach
its steady state. To return to Bloom [4], the 10−8 Hz he mentioned correspond to a time of three years,
so normally we will never really see the steady state in MOSFET circuits. However, as long as we do not
do correlated double sampling, this does not concern us.

1.2 Memory in systems

Each of the systems mentioned above have memory of some sort. For example, it is described in [3]
that the number of vowels in words like ‘aargh’ and ‘loooove’ and the number of hits (the frequency)
when these words are entered as search terms in Internet search engines are related by an 1/fx law.
The absolute numbers are different for each word, but the exponent x only depends on the nature of the
memory, which is: when a person sees a word like ‘looooove’ on a web page, that person may feel inclined
to write ‘love’ with even more o’s in an attempt to express stronger feelings. So in this case the memory
are Internet pages interacting with users’ memories, and x is the same for all words.

Lakes also show flicker noise; in this case the behaviour is close to 1/f5/3 for every lake in the world,
only the magnitude is different. What happens there is that the Coriolis force (from earth rotation)
causes whirls of big dimensions; these whirls transfer their energy to smaller whirls, and so on, until their
energy is dissipated at molecular level. This cascade of whirls is not very much unlike the filter cascade
shown in Fig. 2, and Kolmogorow showed long ago that simply having such a cascade of whirls already
determines the exponent 5/3, but again not the magnitude of the flicker noise.

1.3 Memories in MOSFETs and other electronic devices

Almost every electronic device shows some flicker noise: vacuum tubes, resistors, diodes, BJTs and
MOSFETs; but in MOSFETs, the magnitude is by far the largest. The reason for this is that there are
several different effects causing flicker noise in electronic devices, in every case with 1/fx and x ≈ 1, but
these effects can be divided into volume effects and surface effects [6].

The two main volume effects are Bremsstrahlung and carrier scattering. Bremsstrahlung is a Ger-
man word used in quantum mechanics that roughly means “deceleration radiation”. Whenever an elec-
tron is accelerated, it will emit low-frequency Bremsstrahlung, and will be slowed down by its own
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Figure 4: Variance of flicker noise as a function of system “on” time.

Bremsstrahlung, as will other electrons in its vicinity. Thus we again have low-frequency energy and a
cascade that remembers it, giving 1/f noise. This is the main source of 1/f noise in vacuum tubes.

The second volume effect is scattering, when electrons are scattered at the silicon lattice, or at
impurities in the material, or by acoustical or optical phonons, and so on. In all cases, the scattering will
interact with the lattice, generating phonons, which will later cause more scattering, and again we will
have 1/f noise. This is the dominant source in most solid-state devices.

The effect that dominates in MOSFETs, though, is something quite different: in MOSFETs, electrons
tunnel from traps in the oxide to the gate and the conducting channel, and vice versa. If there is only one
single trap (which may indeed happen in minimum-size deep-sub-micron transistors), then this causes a
power spectral density of the drain current

S(f) ≈ τ

1 + ω2τ2

with a certain trap time constant τ . This is 1/f2 behaviour, as white noise fed through a one-pole
low-pass filter would give, but due to the quantum nature of the electron trapping, this noise signal will
only have two current levels. Such noise is called “random telegraph noise” [5]. Now what happens if we
have several traps? It can be shown that the time constant for a trap at a distance z from the interface
is

τ = τ0 exp
(

1010

m
· z

)
(1)

for some process-dependent time constant τ0, so if traps are uniformly distributed over z = 0 . . . zg,
we will have memories with time constants that are uniformly distributed over a logarithmic scale, as in
Figs. 2 and 3! The difference is that we drive the filter in these figures with Gaussian white noise instead
of a two-level signal with white frequency characteristic. We also see from (1) that even for a gate with
thickness zg = 1 nm, the time constants of the flicker noise are spread over more than three orders of
magnitude.

Experiments with large-scale excitation of MOSFETs – where part of the memory is deleted and
therefore flicker noise is reduced intrinsically – show that flickering occurs even when the transistor is
switched off completely. It can then just not be measured directly, because what we can measure are just
the effects caused by electron trapping: electrons tunnelling in and out of traps will cause both carrier
number fluctuations and also fluctuations of the carrier mobility μ [5], which in turn make the drain
current of the MOSFET flicker. This is also reflected in one of the widely used simple flicker noise models
of the MOSFET,
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Figure 5: Switched-capacitor resistor.

Vg
2

=
K

WLCoxf

where K and Cox are technology parameters, and W and L the transistor dimensions: this formula
does not depend on the bias conditions of the device, meaning it does not depend on whether any current
flows through the MOSFET.

1.4 Memory and correlation

Turning back to the mathematics of flicker noise: the Fourier transform of a power spectral density is the
autocorrelation function, which, for 1/fx noise, is [2]

R(τ) ∼ |τ |x−1

So for x = 1, R(τ) is constant, meaning the present value of the flicker noise signal correlates very well
with all other values of the same signal, and so flicker noise can be removed effectively with techniques
that operate on correlated samples of the flickering signals (e.g., correlated double sampling).

1.5 Flicker noise is offset extended in frequency

If we extend our view of flicker noise down to f = 0, we look at an error signal that is constant in time:
offset. While this is not mathematically inspiring, it still means something in practice: most techniques
removing flicker noise will also cancel offset, and vice versa.

1.6 Techniques to reduce flicker noise

Considering all that has been said until here, we end up with three techniques to fight flicker noise:

• Knowing that flicker noise comes from memory, we attempt to reset this memory. This is known
as large-signal excitation (LSE).

• Knowing that flicker noise has a flat autocorrelation function, we attempt to remove it by subtracting
two correlated samples. This is known as correlated double sampling (CDS).

• Knowing that flicker noise is a low-frequency effect, we attempt to modulate it into a frequency
band outside the signal band. This is known as chopping.

Except for chopping, these techniques only work on sampled signals, so we must first have a look at
switched-capacitor techniques and noise sampling.

2 Switched-Capacitor Techniques

Fig. 5 shows a very simple switched-capacitor circuit. The two switches are closed during the clock phases
φ1 and φ2, respectively, and the two clock signals do not overlap, such that the two switches are never
closed simultaneously.

When φ1 is closed, the capacitor is charged to V1, storing the charge Q = C · V1. When φ2 is closed,
Q = C ·V2. Therefore, in every clock cycle, the charge ΔQ = C ·(V1−V2) is transferred. The mean current
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Figure 6: Switched-capacitor integrator.

through this circuit is the I12 = ΔQ/Tclk = fclk · C · (V1 − V 2), so we have a resistor with equivalent
resistance Req = 1/(fclkC).

The interesting thing about SC filters is that they become much faster with technology scaling. This
can be shown as follows [7]: For good settling, we require Tclk/2 > 5RonC, where Ron is the on-resistance
of the switches. So we want

fclk <
1

10RonC
(2)

The on-resistance of a MOSFET switch is

Ron =
1

μCox
W
L Veff

(3)

where μ is the carrier mobility, Cox the gate oxide capacitance density, W/L the width over the length,
and Veff the gate overdrive voltage.

In addition, we know that when a switch is opened, approximately half of the channel charge Qch =
−WLCoxVeff will go into the capacitor and cause a voltage error

|ΔV | =
|Qch|
2C

=
WLCox |Veff|

2C

So the C we have to use for a certain switch and some given |ΔV |max is

C =
WLCox |Veff|
2 |ΔV |max

(4)

Replacing Ron in (2) according to (3) and C according to (4) gives a very simple result:

fclk <
μ |ΔV |max

5L2
(5)

|ΔV |max depends on the maximum signal and therefore on Vdd. The product μ |ΔV |max does not
change a lot as technology scales, so, to the first order, (5) means that the maximum speed of SC circuits
scales as does the number of transistor per area, which means that Moore’s law is also valid for the speed
of SC circuits.

The main advantage of SC techniques can be shown with Fig. 6. This is an integrator with time
constant

τ = ReqC2 =
C1

C2
· 1
fclk

So we have a time constant derived from a ratio of capacitors, which can be made precise to within
less than one percent, and a clock frequency, which is even more precise.
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2.1 Sampled noise in SC circuits

This great advantage is paid with more aliasing, though. The precise calculation is quite difficult even for
the simple circuit in Fig. 6 — see [8] for details — because, at the output, one simultaneously sees direct
noise from the op-amp as well as sampled noise from the earlier stages. Fortunately, aliased broad-band
noise often dominates, and a simplified analysis can be made.

What noise sampling means can be shown using the very simple circuit in Fig. 5. When φ1 closes,
and we wait for the system to reach the thermal equilibrium, then the energy stored in the capacitor is
1
2CV 2

c . Similarly, the noise energy coming from a noise voltage V c,rms is 1
2CV

2

c,rms. We also know from
thermodynamics that the energy in a system with one degree of freedom is 1

2kT , so it directly follows
that the variance of the thermal noise is

1
2
CV

2

c,rms =
1
2
kT =⇒ V

2

c,rms =
kT

C
(6)

This can also be shown in a different way: the noise caused by Ron is V
2

r = 4kTRon, and the bandwidth
of the filter consisting of Ron and C is 1/RonC. Integrating the filter’s noise over the bandwidth will
again give the result in (6).

So, essentially, as long as Ron is low enough such that the circuit in Fig. 5 reaches equilibrium at the
end of the clock phase, the integrated noise power depends on C only. To the first order, this noise is
white noise. So what goes into the node Vy of Fig. 6 is essentially sampled white noise with a power
spectral density (PSD) of

Sn(f) =
kT

Cfclk
for − 1

2
fclk ≤ f ≤ 1

2
fclk

We also have to look at sampled white noise. Assume that the inputs of the circuit in Figs. 5 and 6
are driven by a pre-amplifier producing white noise up to a noise bandwidth fnbw that is related to the
amplifier bandwidth, so that its single-sided PSD is approximately

Sa(f) =
V

2

amp,rms

fnbw
for 0 ≤ f ≤ fnbw

The square root of the level of this noise PSD would be in the unit nV/
√

Hz value often found in
op-amp data sheets. Since the amplifier must be fast enough to settle well within one clock period, we
normally have fnbw 	 fclk and therefore the noise is aliased. Through aliasing, the noise is compressed
from a range 0 . . . fnbw to a range − 1

2fclk . . . 1
2fclk, so the aliased noise is scaled up:

Sa,aliased(f) =
fnbw

fclk

V
2

amp,rms

fnbw
for − 1

2
fclk ≤ f ≤ 1

2
fclk

or, if we use single-sided spectra for the sampled signals,

Sa,aliased(f) = 2 · fnbw

fclk

V
2

amp,rms

fnbw
for 0 ≤ f ≤ 1

2
fclk

This means: sampling 10-MHz-wide white noise at 1 MHz gives twenty times higher noise power. In
Fig. 6, this noise is then integrated by the SC integrator.

With this way of thinking, we can identify all noise sources, calculate their noise transfer functions to
the output of the circuit, and add all contributions. [8] shows this using Fig. 5 as an example. A general
method using matrix equations and including white noise, flicker noise and amplifier noise, was presented
in [9]. [10] describes the simplified noise analysis of choppers and correlated double samplers; this will be
discussed again briefly in the following sections of this chapter.

Fortunately, in SC applications that do not attempt to cancel flicker noise, sampled white noise
normally dominates, which makes an analysis simpler. To illustrate this, the lower curve in Fig. 7 is a
(sampled) signal with a white-noise and a flicker-noise component. The flicker noise corner frequency is
at approximately 1/5 of the signal bandwidth. If this signal is under-sampled ten times, the upper curve
results, with the same flicker noise, but ten times more white noise, so the flicker noise corner frequency
still is at approximately 1/5 of the signal bandwidth. So sampling generally reduces the flicker noise
corner frequency.
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Figure 7: PSD of white noise overlaid by flicker noise, sampled with 1ṀHz and 100k̇Hz.

Figure 8: Switched current source.

3 Bias switching and large-scale excitation (LSE)

Figure 8 shows a switched current source. If this circuit is operated with a variable-duty-cycle clock φ
and its inverse φ, then the current can be tuned by a factor of two. It has been observed that for duty
cycles between 0% and 100%, this circuit is much less noisy than the circuit simulator predicts [5]. The
reason for this is that switching a transistor off deletes some of its flickering memory by kicking some of
the trapped electrons out of their traps.

Fig. 9 shows another Matlab simulation in which the memory of the flicker noise is deleted almost
completely once every 10 μs. The flicker noise disappears almost completely in this example; normally,
some flicker noise remains at low frequencies because it is not possible to delete all of the memory. This
effect can be calculated [5], but not simulated; there is as yet no circuit simulator that takes flicker noise
memory effects into account. However, there are already many applications other than Fig. 9 in which
LSE is used.

For example, [11] presents an op-amp with a switched input differential pair as in Fig. 10. The two
transistors are used alternatively; the clock switches the unused one off, deleting its flicker noise memory.
This will of course introduce spikes in the output voltage at multiples of fclk, but it also reduces the
flicker noise of the op-amp. In [11] the measured noise at low frequencies was reduced by 5 dB.

Another place where such memory effects are observed are oscillators. In oscillators, transistor flicker
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Figure 9: .

Figure 10: Switched differential pair.

noise will cause low-frequency phase noise, which is narrow-band noise around the oscillator centre fre-
quency that is not less paradox in nature than flicker noise itself [12]. Periodically switching off MOSFETs
in oscillators should reduce such low-f phase noise because it reduces flicker noise. This has been shown
experimentally both for CMOS ring oscillators, where the measured phase noise often is lower than sim-
ulated [13], and for RF LC oscillators, where flicker noise can be reduced by using two alternatively
switched tail transistors, similar to what has been done in Fig. 10 [14].

Figure 11 shows a pixel of an image sensor [5]. In this circuit, the photo diode accumulates charge
while it is exposed to light. To read out, M1 is switched on, charging the floating diffusion to a high
potential. This voltage is read out by activating M3, “row select”. In a second step, the readout transistor
between the wells is activated, transferring the photo charge to the floating diffusion. Then a second read-
out is made. The difference of the two measurements is formed, removing offset and also flicker noise.
Flicker noise in this circuit comes mainly from M2, and it is possible to reduce the intrinsic flicker noise
of M2 by resetting it after each read-out through pulling the column bus. This, however, can be a bad
idea, as will be discussed in the section on correlated double sampling.
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Figure 11: Image sensor pixel.

4 Chopping

Chopping is one of two fundamentally different ways to remove flicker noise from the signal. Chopping can
be done whenever it is possible to feed the signal through the flickering amplifier with different signs in
every other clock period. This chopping operation can then be reversed at the output, after the amplifier,
as shown in Fig. 12.

Essentially this system modulates the input signal up to the frequency fchop, and also 3fchop, 5fchop,
and so on. Then the signal goes through the amplifier, where it picks up flicker noise and also offset.
After the amplifier, the signal is modulated back to the base band, but at the same time, the flicker noise
and the offset are modulated up to the multiples of fchop. So, as long as fchop is far enough above the
signal band, the signal is not disturbed by flicker noise [10].

The formulae for the chopped noise spectrum can be found in [10], but Fig. 13 shows that the
relations between the amplifier output noise and the spectrum after the second multiplier in Fig. 12 are
really simple: below fchop, the noise is white and on the level of the amplifier output noise at frequency
fchop. This makes it advisable to choose the chopper frequency fchop at the 1/f -noise corner frequency,
or higher.

Note that chopping is just a modulation, it does not involve sampling! So while it is possible to use
chopping in a sampled-data system, it is just as well possible to use it in a continuous-time system, where
it will not do any noise aliasing.

It is equally important to note that chopping does not remove offset and flicker noise. For example,
if the amplifier has an input offset of 1mV, a gain of 100, no input signal, and fchop = 10kHz, then its
output will be a rectangular signal with frequency fchop and a magnitude of 200mVpp! This means that
when a signal is present, that signal will be added to this huge rectangular wave, and may well saturate
the following stages, which is why most chopping systems have low-pass filters after the second chopper.

4.1 Conventional chopper amplifier

Fig. 14 shows a conventional amplifier. Although we draw a multiplier in Fig. 12, the chopper section is
very simple to realise, all that is needed are four switches that cross the lines of the balanced amplifier
during φ2, or do not cross them during φ1 [10]. The design constraints on such a system are:

• fchop should be higher than the 1/f -noise corner frequency and must be at least twice the signal
band’s upper frequency, fsig.

• The amplifier will process the signal in the frequency band fchop ± fsig, so it must work well and
with sufficient slew rate in this frequency range.
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Figure 12: The principle of chopping.

• It is advisable to remove the energy of the chopped signal after the second chopper using a low-pass
filter with passband up to fsig and stop band below fchop.

• The switches must be designed such that they result in as little charge injection as possible (see the
section on switched-capacitor circuits); such charge injection will cause residual offset.

One way to reduce residual offset due to charge injection is shown in Fig. 15. In this amplifier, the
inner chopper is designed at a frequency above the 1/f corner frequency, thus moving 1/f noise out of
the signal band. A second outer chopper can then operate on a frequency below the 1/f corner frequency,
it will remove the residual offset of the inner chopper, and will cause a low residual offset itself, because
it operates at a low frequency. A 100nV-offset nested chopper amplifier was reported in [15]. Note that
in such amplifiers, fsig must be lower than half of the lower chopper frequency.

Very good results can also obtained with tackling the residual offset at its source, for example by
staggering the clock edges of the second chopper in Fig. 14 slightly behind the edges of the first chopper,
leaving a small time gap in which the error pulses of the first chopper can die away [16].

4.2 Multi-path chopper amplifiers

Nevertheless, in all these examples, the chopper frequency must be above twice the maximum signal
frequency. This limitation can be overcome by building a multi-path amplifier, as in Fig. 16.

If gm4 is chosen such that both the DC gain of the lower path and its unity-gain frequency are much
lower than those of the upper path, a situation as in Fig. 17 occurs: the transfer functions of the two
paths will cross at the frequency fcross; below this frequency, the lower path will dominate the op-amp’s
behaviour; above fcross, the upper path.

So it becomes possible to replace the lower path by a chopper amplifier as in Fig. 14, and operate it
on a very low chopper frequency. [17] presents a chopper amplifier that has 1 μV offset, fchop = 4kHz,
and a unity-gain frequency of 1.3MHz with 50pF load. This amplifier has more residual offset than the
ones in [15] and [16], but the upper signal frequency of 1.3MHz is large compared to the 5.6 kHz of [16]
and huge compared to the 8 Hz (sic!) of [15]. This shows that the main frequency limitation of chopper
amplifiers can be overcome, although with considerable circuit design effort.

4.3 Chopping in sampled-data systems

Finally, chopping can also be used in sampled-data systems. For example, Fig. 18 shows the cross section
of a MEMS acceleration sensor and a block diagram of the read-out electronics.
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Figure 13: Flicker noise and chopped flicker noise.

The sensor is capacitive, with two rigid plates at the top and the bottom, and one plate that hangs in
free space, attached by a spring, in the centre. When accelerated, the centre plate will move up or down,
resulting in a different distribution of the capacitances towards the top plate and bottom plate. Since
this is a linear electrical system, the position can be read out by measuring Vcentre while either setting
Vtop = VDD, Vbottom = VSS ; or by setting Vtop = VSS , Vbottom = VDD. This will give the same value
with opposite sign, which can be read out by a switched-capacitor low-noise amplifier. So doing the two
possibilities alternatively amounts to chopping at the input of the amplifier (LNA).

If the offset and flicker noise is not too big in such a system, the output of the LNA can be digitised
and the second chopper can be a simple digital sign change on the sampled value. However, if the offset
or flicker noise are so big that the analog stages after the LNA are saturated, then it is necessary to add
an analog second chopper and a filter after the LNA as in Fig. 14.

5 Correlated Double Sampling (CDS) and Auto-Zero techniques

The third idea to deal with flicker noise is to remove it after it has occurred. Techniques doing this are
called “auto-zeroing” or “correlated double sampling”. Both are fundamentally the same, what is done is
to first sample without a signal (i.e., only the offset), and then sample again with a signal, and subtract
the two values.

The effect on offset, ideally, is that it is removed, because the offset of the sampling amplifier will be
the same for both samples. Flicker noise will mostly be removed, because two samples of a flicker noise
process correlate well (see Sec. 1 and the discussion of the autocorrelation function of 1/f noise). White
noise, however, does not correlate with earlier samples of itself, so the power of the white noise of the
amplifier will simply be doubled.

This can be seen well in Fig. 19, which shows the spectrum of a process with flicker noise and white
noise (bottom); the same process sampled, having ten times as much white noise; and double sampled,
with twenty times as much white noise, but no flicker noise.

Fig. 19 shows CDS performed on a signal that had already been sampled. Sampling a continuous-
time signal gives different results. We will now look at the white-noise and the flicker-noise contributions
independently. For white noise whose bandwidth B = π

2 fc is much larger than the input sampling
frequency 2fs, the spectrum after CDS is [10]

SCDS,white ≈
(

π
fc

2fs
− 1

)
S0sinc2

(
πf

2fs

)
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Figure 14: Chopper amplifier.

where fc is the corner frequency of the white noise and S0 is the DC noise level. Note that here we
choose fs to be the sampling frequency at the output of the CDS block, after two samples have been
subtracted.

Similarly, the flicker noise at low frequencies will not disappear completely; a fold-over component
will dominate at low frequencies:

Sfold,1/f ≈ S0f1/f

fs

[
1 + ln

(
1
3

fc

fs

)]
sinc2

(
πf

2fs

)

where f1/f is the corner frequency of the 1/f noise. The shape of the two spectra is exactly the
same, and the different factors in front of the sinc function mean that as long as the flicker noise corner
frequency f1/f is sufficiently far below the sampling frequency, aliased white noise will dominate the
behaviour at low frequencies.

Fig. 20 shows the sum of these aliased components superimposed on Fig. 19. The effect of using
CDS on a continuous-time signal is that while a simple calculations as in Sec. 2 or a simulation with
sampled signals estimate the total noise correctly, both underestimate the low-f noise by a factor of
π
2 = 1.57 = 4 dB! On the other hand, they overestimate HF noise at the upper end of the frequency band,
where almost only white noise of power S0 will be seen in reality.

5.1 Switched-capacitor comparator with CDS

Correlated double sampling is not very difficult to implement, and it is used in many applications. Our
first example, Fig. 21, is a comparator that can be used in Flash A/D converters [18]. The operation of
this comparator is simple: in phase φ1 (Fig. 22 left), the input voltage Vin is sampled onto the capacitor
C. Because of the closed negative feedback loop, the negative input of the amplifier settles to the offset
voltage Vos, so C is charged to the voltage Vin −Vos. In the phase φ2 (Fig. 22 right), the voltage Vin −Vos

between the negative input and Vgnd is compared to the new value of Vos, so the comparator actually
tests whether

Vos|φ2
−

(
Vos|φ1

− Vin|φ1

)
> 0

The difference Vos|φ2
− Vos|φ1

is formed; this is correlated double sampling that removes offset and a
lot of 1/f noise as explained above.
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Figure 15: Nested chopper amplifier.

Figure 16: Multi-path amplifier.

As with all switched-capacitor circuits, the main difficulties of this circuit are parasitic charges injected
when switches open. Apart from that, such a system can remove so much offset that the comparator can
even be a simple CMOS inverter, as shown in Fig. 23 [18].

For a high-resolution comparator, an inverter will not have sufficient gain in the transition region,
so an op-amp must be used, for example a Miller op-amp. The problem there is that during φ1, the
amplifier must be stable in the feedback loop, while during φ2 it just has to be as fast as possible. A
switchable compensation as shown in Fig. 24 will take care of this, and with proper scaling of the switch
transistor, this switch, while on, will introduce a compensating zero in the Miller amplifier (c.f. [7]).

5.2 Switched-capacitor amplifier with CDS

The comparator in Fig. 21 can readily be modified to give an SC amplifier [10] by adding a capacitor
that is switched into the signal path in phase φ2, as shown in Fig. 25.

Then, in φ1, C1 will be charged to Vin − Vos, and C2 to −Vos; in φ2 the difference is formed and the
resulting output voltage Vout = Vin · C1/C2 with the offset and flicker noise removed.

While this circuit works well in practice, it has two problems: first, φ1 and φ2 must not overlap. This
means that while neither is active, the amplifier is in an open-loop configuration, and care must be taken
that the output does not jump to a supply rail during that time and pushes the op-amp into a state from
which it takes long to recover. Second, during φ1, the output is always Vos, so the output jumps forth an
back between the signal voltage and the small voltage Vos, and thus the amplifier needs to have a high
slew rate. [10] gives a good overview on SC amplifiers in which the amplifier needs to have only a modest
slew rate.

5.3 Correlated double sampling in sampled systems

In Sec. 4, we introduced an example of an acceleration sensor — in Fig. 18 — and discussed chopping.
This system can easily be transformed into a CDS system: the sensor is operated with the same sequence

14



Figure 17: Open-loop transfer function of the multi-path amplifier.

Figure 18: Acceleration sensor with SC LNA of gain A.

as in Sec. 4, but instead of only changing the sign of every second sample, we then also form the difference
of two consecutive samples.

The advantage of this system is that offset and flicker noise are removed — and not only modulated
out of the signal band — so amplifiers and A/D converters after the CDS stage are not in danger of
being saturated. The clear disadvantages are that white noise is doubled, and also that now two input
samples are needed to provide one output sample. The latter means that either the time available for
sampling has to be cut in two pieces, requiring faster amplification than in the chopper system, or that
two circuits forming differences are operated in parallel, one making V [2n+1]−V [2n], the other making
V [2n + 2] − V [2n + 1].

5.4 Correlated double sampling combined with LSE

In Fig. 11 we showed a simple photo diode readout circuit, in which large-scale-excitation was used to
reduce the intrinsic noise of the readout transistor. Simultaneously, correlated double sampling is also
used.

The problem is that doing both at the same time can give more flicker noise instead of less flicker
noise [5]. LSE resets the memory of the transistors, so after they return into their operating point, the
memory starts to fill up again, and the variance of the flicker noise will start to increase as shown in
Fig. 4. So if the two samples used for CDS are taken at two times when the variance of the flicker noise
is very different, the two samples do not really correlate and CDS can increase the flicker noise instead
of cancelling it. This is extremely difficult to simulate, but has been shown by measurement in [5].

This means in general: it is not enough that the transistor biasing is the same at both sample times,
the history of the biasing also needs to be as similar as possible at both sampling instants.
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Figure 19: Flicker noise subjected to sampling and correlated double sampling.

6 Conclusion

Not all three methods to fight flicker noise can be used in every system. Large-scale excitation is mostly
used — or happens by itself — in sensor circuits with low transistor count, and in oscillators: it cannot
be simulated, and calculating it is also difficult. Correlated double sampling is mostly used in systems
that process sampled data, or are designed to sample data. Chopping is mostly used in continuous-time
systems.

This chapter has given an introduction into all three techniques, together with a description of the
nature of flicker noise, and of noise sampling. The literature in the References section was chosen carefully
to give the interested reader starting points for going deeper into different aspects of flicker noise; the
four main papers to read would be [1] for the mathematics of flicker noise, [6, 5] for its physics, and [10, 5]
for cicruit solutions.

Appendix

Fig. 26 shows the Matlab/Simulink model use to make the simulations for this book chapter. Fig. 1 was
made with the following three scripts:

flickr˙fig01.m

%
% Hanspeter Schmid, June 2007
%
% Draw the flicker noise / white noise spectrum
%
clear

poles_and_zeros

sim(’flickr_gen’)

save data_fig01
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Figure 20: Continuous-time flicker noise subjected to correlated double sampling

Figure 21: Comparator with CDS.

poles˙and˙zeros.m

%% Poles and Zeros for the flicker noise generator
divideDecade=8;
fMax=4e5;
iMax=floor(log10(fMax)*divideDecade)

Vpoles = [];
Vzeros = [];

tSim=1;
rSeed=26649;

for k=1:4:iMax
Vpoles=[Vpoles -10^((k+1)/divideDecade)];
Vzeros=[Vzeros -10^((k+3)/divideDecade)];

end

format compact
Vpoles
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Figure 22: The CDS comparator in phases φ1 (left) and φ2 (right).

Figure 23: Inverter-based comparator with CDS.

Vzeros
Vgain=1/10^(1/divideDecade);

plot˙fig01.m

load data_fig01

[Pxx,w]=pwelch(flickr.signals.values(1:1e6+1),hann(2^14),2^13,2^14,1e6);
loglog(w,Pxx,’r’);
axis([min(w) max(w) 2e-7 2e-3])
grid
grid minor

xlabel(’Frequency’)
ylabel(’PSD’)
title(’Power spectral density of ideal flicker noise and white noise’)

print -deps2 matlab_fig01.eps
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Figure 24: Miller amplifier with switchable compensation.

Figure 25: SC amplifier with correlated double sampling.
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