IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-27, NO. 4, DECEMBER 1978

423

Self-Checking Resistive Ratios

ARTHUR MELVILLE THOMPSON

Abstract—The two resistors which form the ratio are constructed
as two separate networks of nominally equal resistors. Each network
is chosen such that there is a dual network which can be constructed
from the same set of resistors. Two configurations with the same
nominal ratio are obtained by switching each network to its dual and
interchanging their positions in the ratio. The mean ratio is a very
close approximation to the nominal value. As an example, it is shown
that only six resistors are required to produce all steps of a
single-decade voltage divider with a mean accuracy of 1 in 10 using
resistors adjusted to 1 in 10°.

I. INTRODUCTION

HERE ARE many measurement systems in which the
Tratio of two quantities is derived from the ratio of two
resistances, and many methods have been devised for cali-
brating such ratios. The two resistance values may be
measured separately on a suitable bridge, in which case the
calibration problem is transferred to the bridge. We are
concerned with constructing the two resistors in such a way
that the resistance ratio may be determined by additional
measurements on the same measurement system, ie., to
provide for in situ calibration.

The simplest and best known example of such an in situ
calibration, which is also the simplest case of the general
system to be described, is a ratio of unity given by two,
nominally equal resistances R, and R,. In practice R, and
R, will not be exactly equal, and the ratio will not be exactly
unity. A measurement is made with the ratio X = R, /R, so
that the value obtained is proportional to X. R, and R, are
interchanged to give aratio Y = R, /R, and another meas-
urement gives a value which is proportional to Y. Since
(XY)V2 =1, the geometric mean of the two values will
correspond to a ratio of unity. Since R, /R, = (X/Y)"2,this
ratio may also be determined from the two measurements.

If R, /R, = 1 + 0, where 4 is small, then the arithmetic
mean of the two measurements which corresponds to
HX + Y) =1+ 46% -+ will be a very close approximation
to the unity ratio value.

Ratios other than unity may also be made self-checking if
the two ratio resistors are each made up of combinations of
nominally equal resistors, i.e., each resistance value is the
input resistance of a network of nominally equal resistances.
For a ratio in which the total number of resistors in the two
networks is small, a very accurate value may be obtained by
taking the average of all the values corresponding to the
different approximations to the ratio obtained by permuting
the resistors in the two networks. This method becomes
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rather time consuming as the number of permutations
increases.

It is possible to choose the networks so that only two
measurements are required. If each of the two networks of
equal resistances has a dual, then two configurations with
the same ratio can be obtained by switching each network to
its dual and interchanging thieir positions in the ratio. It will
be shown that if the resistances are not quite equal, the mean
ratio is a very close approximation to the true value.

II. DuAL NETWORKS

We shall be concerned only with passive, resistive
networks. If the graph of a network can be mapped on a
sphere, then there is a dual network of the same number of
branches such that the meshes of one correspond to the
nodes of the other. If, in addition, the values of the resist-
ances of the branches of one network are equal to the
conductances of the corresponding branches in the other,
then all corresponding dual quantities of the two networks
are equal. In particular, the input resistance between a pair
of terminals of one network is equal to the input conduc-
tance between corresponding terminals of the other. If we
have a network in which all the branch resistances are equal
to R, then in the dual network all the branch conductances
are equal to G, and for all the duality relations to hold
R = G. For R # G we have networks with dual geometries
only, but we can easily determine the relations between
corresponding quantities by using the duality relations for
R =G =1 and scaling the results. For example, if the
resistance between two terminals of a network of 1-Q
resistances is p, the resistance between the terminals of a
similar network with resistances R is pR. The conductance
between corresponding terminals of the dual network with
1-S conductances must also be p so that the conductance
between the terminals of a similar network with conduc-
tances G is pG. We shall use this scaling process for the case

where the same components are used in each network, i.e.,
RG = 1.

IT1. RESISTIVE RATIOS

Consider the ratio of two resistances, one derived from a
network of resistors each of value R, and the other from
another network of resistors each of value R,. If the
resistance of the first network is pR, and that of the second
qR,, then the resistance ratio is

X = pR,/qR,;.

Now if each network is switched to the dual configuration
using the same components, the conductances correspond-
ing to the resistance values of the original networks are pG,
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Fig. 1. (a) General circuit parameters for a two-terminal-pair network.

(b) Dual configurations for one offset component.

and qG, where G, = 1/R, and G, = 1/R,. If these networks
are interchanged the resistance ratio is

Y = pR,/qR;.

Hence (X Y)'2 = p/q, i.e., as for the unity ratio considered
earlier, the geometric mean gives the required ratio p/q. As
before if R, /Ry =1+ 6, %X + Y) = (1 + 402, --*)p/q.

To evaluate the effect of inequalities amongst the resist-
ances of one of the networks, we return tothe R=G =1
networks and assume that one of the resistancesis 1 + x and
the corresponding conductance is 1+ y, ie., (1 +x)x
(1 + y)= 1. The remaining 1-Q resistances form a two-
terminal-pair network N which is terminated by the
resistance of 1 + x and whose input resistance p, would
equal p for x =0. For the dual configuration the 1-S
conductances form a two-terminal-pair network N* which
is the dual of N and which is terminated by the conductance
of 1 + y and whose input conductance p, would equal p for

y = 0. From Fig 1, we have e, = —i,(1 + x), whence
. A(l+x)+B
Pl =G )+ D
and from the duality of N and N*
_A(l+y)+B

P=Cci+y)+D

If the networks are now scaled to R ;, G ; and we consider the
same divider as before, we have X =p,R,;/gqR, and
Y =p,R;/qR,.

Hence

(XY)'2 = (p,p2)""?/q
and (p, p,)"/? replaces the p of our original ratio where
_ [A(1 + x) + BJ[A(1 + y) + B]
PrP2 =11 + x) + DJ[C(1 + y) + D]

_ (A + B)* — ABxy
" (C + D)? — CDxy

and

(pypa)'? = A+B AB CcD ), ]

C+D l_xy((A+B)2 T (C+DY
=p(l—W-xy,-)

ll/l
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TABLE 1
RESISTANCE VALUES OBTAINED BY COMBINATIONS OF 1-Q RESISTORS
Number Size of Unit
of 1Q
Resistors | 1 1/2 /3 1/4 /5 1/6 1/7 1/8
1 1
2 2 1
3 3 3 1
2
4L 1 5 4 1 2
3 5 3 3
5 2 1 7 5 1 5 2 3
5 7 8 7 4 7 3 5
6 4
7 5
8 6

The number in the Table is to be multiplied by the
size of the unit at the head of the column.

The value of W can be calculated for each resistor in the
network. Since for resistance networks A4, B, C, and D, all
have the same sign, W < §.

We have shown that the offsetting of a single resistor
produces only a second-order effect on the mean ratio. For
the general case where the errors in the resistors are
distributed about a mean, the second-order error contains
all product terms with coefficients that depend on the
positions of the components in the network. The number of
terms increases rapidly with the number of resistors, and, in
a particular case, the errors are best evaluated by inserting
measured values in the expressions for the input resistance
and input conductance of the two configurations. Examples
of this approach are given later.

IV. APPLICATIONS

A special case of the dual configuration technique has
been used to provide a very accurate self-checking potential
divider to compare the EMF of a standard cell with the
potential produced by a biased and irradiated Josephson
junction [1]. Two Hamon-type buildup resistors [2] are used
to form the ratio. This type of resistor is built-up from a
number of equal resistors which may be switched from series
to parallel. For n resistors in the buildup, the ratio of series to
parallel resistance is very close ton?. The two configurations
of the ratio are obtained by switching each buildup resistor
to its alternative configuration and interchanging the re-
sistors in the divider. With buildup resistors of n and m
nominally equal resistors, respectively, ratios of n/m or
n x m may be set up, but the system has usually been used
with n = m for a ratio of n?. For this case the input and
output resistances of the potential divider are both un-
changed by the change of configuration.

To illustrate the usefulness of the dual configuration
technique for setting up self-checking resistive ratios, we
shall consider its application to the design of a single-decade
potential divider, ie., we wish to realize networks with
resistance ratios of 9:1, 8:2, 7:3, 6:4, and 5:5.

The selection of network configurations is aided by Table
I which gives the resistance values that can be obtained by
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Fig. 2. Dual configurations of networks producing resistance ratios for
each step of a single-decade divider.

various combinations of a small number of 1-Q resistances.
The number of combinations with different values of resist-
ance increases very rapidly as the number of resistances in
the network is increased.

The required ratios for all the steps of the decade can be
obtained from only six resistors, as indicated in Fig. 2, which
shows the set of dual configurations. The resistors are
numbered as though permanently connected in series. The
remainder of the decade is produced by inversion of the
ratios shown.

We can calculate the individual ratios and the errors of the
means if we know the values of the resistances. As an
example, we shall assume that all of the odd-numbered
resistors are high by 1 in 10* and all of the even-numbered
low by the same amount. The individual ratios and the
means are given in Table I1. It can be seen that for this by no
means favorable distribution, the geometric mean is in error
by not more than 1 ppm and the arithmetic mean by not
more than 2 ppm.

The system we have given as a design example has been
used to produce a self-checking calibrator for digital volt-
meters. This calibrates the first decade of the lowest three
ranges with an accuracy which is limited almost entirely by
the stability and resolution of the voltmeter.
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TABLE 11
CALCULATED RATIOS FOR RESISTORS OFFSET BY +1 IN 10°

Nominal Departure from nominal

ratio ppm

X Y XN’2 00
9:1 + 667.8 - 665.6 +0.9 +1.1
8:2 + 1.0 + 1.0 +1.0 +1.0
7:3 +10485 -1046.7 +0.4 +0.9
6:4 +1668.0 -1665.3 0 +1.3
5:5 +2002.0 -1998.0 0 +2.0

V. LIMITATIONS

It has been assumed in the analysis that the resistance of
each of the necessary links is zero. In practice, it is difficult to
reduce the resistance of a simple switch to less than about 1
m¢ and only in a few special cases can weighting resistors be
used as in the Hamon buildup resistors. Hence, if an
accuracy of 1 ppm is to be assured, the individual resistances
must be at least 1 kQ.

The relative values of the resistances must be stable during
measurements with the two separate configurations of the
ratio. So far as ambient temperature effects are concerned,
the degree of equality of the temperature coefficients of the
components is more important than the actual values. A
limitation which must be borne in mind stems from the load
coefficients of the resistors. Whether the ratio is being used
as a potential or current divider each resistor will most likely
be dissipating different powers in the two configurations.

VI. CONCLUSION

A technique has been described for setting up resistive
ratios in such a way that the ratio may be obtained by two
different configurations. In situ calibration of the ratio is
made by taking two measurements, one for each
configuration. Because of the need to switch the resistors, the
technique is most useful for resistances of 1 kQ or more.
Errors due to the load coefficients of the resistors are not
eliminated.
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