Our laboratory researches wasn't confirmed the insensitivity of the LTZ1000 to mechanical (thermo-mechanical) stress. Output voltage drift is small, but measurable even in 7.5 digits mode and well explained via strain compatibility conditions of LTZ1000 and PCB's.
Hello Mickle,
those are interesting findings!
But I do not understand them yet, sorry, it's always me.
What in fact is your explanation of the offset, what you call strain compatibility LTZ/PCB?
I still do not see, which physical effect causes this shift of voltage, and where this effect is located: in the solder junction, in the package, on the chip?
It's clear, high temperatures on a PCB cause strain between rigid bodys of different thermal expansion coefficient , e.g. SMD ceramic components (R, C) versus the PCB itself.
But that's not valid for leaded components, as the leads will simply follow the PCBs expansion.
Only if you have a torsion of the PCB, I could imagine, that the different leads of the TO8 package see different forces in different directions, as you obviously want to demonstrate by your measurement (what was your measurement setup?) and your finite elements simulation.
I see no reason why the PCB should perform such a torsion , if the PCB simply is heated in the middle of the LTZ.
Then, it's not clear to me, why the PCB should heat up to 65°C, if the reference is at this stabilization temperature, or at much lower values (e.g. if run on 45°C), as there is a thermal gradient between the TO 8 package and the PCB.
So, is the observed/measured shift just an exaggeration of this (still not named) effect?
For me, it would be very interesting, how you construct LTZ references today, i.e. which resistor types from Vishay, LTZ A type or not, which temp?
Well I could first investigate on your 7081 modification, but it would be nice, if you would answer specifically to the open questions here.
Thank you very much!
Frank