6.2.4 Storage durations of objects

An object has a sforage duration that determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant address,?> and retains
its last-stored value throughout its lifetime.?® If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to reaches the end of its lifetime.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifier static has static storage duration. Its lifetime is the entire
execution of the program and its stored value is initialized only once, prior to program
startup.

An object whose identifier is declared with no linkage and without the storage-class
specifier static has automatic storage duration.

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object is created each time. The initial value of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration is
reached in the execution of the block; otherwise, the value becomes indeterminate each
time the declaration is reached. -

For such an object that does have a variable length array type, its lifetime extends from
the declaration of the object until execution of the program leaves the scope of the
declaration.?”) If the scope is entered recursively, a new instance of the object is created
each time. The initial value of the object is indeterminate.

Forward references: statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array
declarators (6.7.5.2), initialization (6.7.8).

25) The term “constant address™ means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same

program.
26) In the case of a volatile object, the last store need not be explicit in the program.

27) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

32 . Language §6.2.4

100 6 Statements

example) without destroying class objects with automatic storage duration.]

6.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termi-
nation of the smallest enclosing iferation-statement or switch statement; control passes to the statement
following the terminated statement, if any.

6.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;:) {
{ { {
/7 ... /] ... //
1 ! 1
contin: ; contin: ; contin: ;
} } while (foo); }

a.cont inue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 The return statement [stmt.return}
A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression is implicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent to a return with no value; this results in undefined
behavior in a value-returning function.

A return statement with an expression of type “cv void” can be used only in functions with a return type
of ¢cv void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]
The goto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]
A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps " from a point where a local variable with automatic storage duration is not in scope to a

Yo - S
7 The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

6.7 Declaration statement 101

point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

[Example:
void £()
/7.
goto 1x; // ill-formed: jump into scope of a
/7
ly:
X a-=1;
/]
1x:
goto ly; // OK, jump implies destructor
// call for a followed by construction
/ / again immediately following label 1y
}
—end example]

The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with
constant-expressions is initialized before its block is first entered. An implementation is permitted to per-
form early initialization of other local objects with static storage duration under the same conditions that an
implementation is permitted to statically initialize an object with static storage duration in namespace scope
(3.6.2). Otherwise such an object is initialized the first time control passes through its declaration; such an
object is considered initialized upon the completion of its initialization. If the initialization exits by throw-
ing an exception, the initialization is not complete, so it will be tried again the next time control enters the
declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behav-
ior is undefined. [Example:

int foo(int i)

{
static int s = foo(2+*i); / / recursive call — undefined
return i+l;
}
—end example]

The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. [Note: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

6.8 Ambiguity resolution » [stmt.ambig]

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T is a
simple-type-specifier (1.1.5),

T(a)->m = 7; / / expression-statement

T(a)++; / / expression-statement
T(a,5)<<c; / / expression-statement

