
Analog Filter General Transfer Functions

This is a compendium containing the general and classic analog filter transfer functions in the 
complex (s) domain, aka Laplace notation.
I’ve compiled it because I’ve found no source for this kind of comprehensive listing anywhere else. 
I personally find it very useful, and refer to it frequently when doing circuit analysis/synthesis.

Additionally, generic equations for calculating magnitude and phase response for second-order 
filters are included.

_______________________________________________________________________________

In General:

The complex operator s is used in all general transfer functions.
For analysis and synthesis in the real time/frequency domain, s is replaced by jω, where j indicates 
an imaginary number and ω the angular frequency.
For final analysis, ω=2πf where f is frequency in Hz.

Transfer functions higher than first order use the damping ratio ζ, but if you’re more comfortable 
using Q or α, the relationsip is: 2ζ = 1/Q = α.

K is simply a gain factor and can be set to 1 at your choice, it’s just there for completeness.

Higher order transfer functions are listed as even/odd and can always be realized using cascaded 
second order filters, or second order filters plus an additional first order filter.

For the higher-order filters, everything after the ”…..” is optional.
Mostly a 2nd, 3rd or perhaps a 5th order filter is useful. It’s all up to you.

Cheers.

This document was created using LibreOffice Writer and LibreOffice Math.
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First-order filters:

Low pass:

F(s)=K⋅
ω0

s+ω0

High pass:

F(s)=K⋅ s
s+ω0

All pass:

F(s)=K⋅
s−ω0

s+ω0

Second- and higher-order filters:

Low pass even order:

F(s)=K⋅
ω0a

2

s2+2ζa ω0a s+ω0 a
2 .. .. .⋅

ω0n
2

s2+2ζnω0n s+ω0n
2

Low pass odd order:

F(s)=K⋅
ω0 a

s+ω0 a

⋅
ω0 b

2

s2+2ζb ω0 b s+ω0 b
2 . .. . .⋅

ω0n
2

s2+2ζnω0 n s+ω0n
2

High pass even order:

F(s)=K⋅ s2

s2+2ζa ω0 a s+ω0 a
2 . .. . .⋅ s2

s2+2ζnω0 n s+ω0 n
2

High pass odd order:

F(s)=K⋅ s
s+ω0 a

⋅ s2

s2+2ζb ω0 b s+ω0 b
2 .. .. .⋅ s2

s2+2ζn ω0 n s+ω0n
2

All pass even order:

F(s)=K⋅
s2−2ζaω0a s+ω0a

2

s2+2ζa ω0a s+ω0a
2 . .. ..⋅

s2−2ζn ω0n s+ω0n
2

s2+2ζn ω0n s+ω0n
2

All pass odd order:

F(s)=K⋅
s−ω0a

s+ω0a

⋅
s2−2ζb ω0b s+ω0b

2

s2+2ζb ω0b s+ω0b
2 . . .. .⋅

s2−2ζnω0n s+ω0n
2

s2+2ζn ω0n s+ω0n
2

Band pass (peak) even order:

F(s)=K⋅
2ζaω0 a s

s2+2ζa ω0 a s+ω0 a
2 . .. . .⋅

2ζnω0 n s

s2+2ζnω0 n s+ω0 n
2

Band stop (notch) even order:

F(s)=K⋅
s2+ω0 a

2

s2+2ζa ω0 a s+ω0 a
2 . .. . .⋅

s2+ω0n
2

s2+2ζnω0 n s+ω0 n
2
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Magnitude Response for Second-Order Filters

Determining the magnitude response M(s) of a transfer function is done by calculating the absolute 
value of F(s) by replacing s with jω and solving for ω.

M (s )=|F (s)|=|N (s )|
|D (s)|

N(s) and D(s) are numerator and denominator of the transfer function F(s).
Keep in mind that j denotes an imaginary number with a π/2 (or 90°) angle in the complex domain 
and that j2=-1, so using s=jω means s2=-ω2.

Example: low pass filter transfer function, replacing s with jω:

F(s)=K⋅
ω0

2

s2+2ζω0 s+ω0
2      gives:      F( j ω)=K⋅

ω0
2

−ω2+2ζ ω0 j ω+ω0
2  

Rearranging the real and imaginary (j) terms and using only the absolute values for the vector 
lengths, by applying Pythagoras’ theorem  √(a2 + b2) = c2, we get:

M (ω)=K⋅| ω0
2

√(ω0
2−ω2)2+(2ζω0ω)2|

Taking this result further by factoring or expansion is not productive.
Important is, that the equation now has only one real variable (ω), and can be processed numerically 
in any graphing/plotting/analyser/spreadsheet environment.

The other transfer functions (high pass, band pass, band stop) are just as simple. The denominators 
are all the same, and the numerators are easy to calculate:

High pass:

M (ω)=K⋅| −ω2

√(ω0
2−ω2)2+(2ζω0ω)2|

All pass:
  magnitude is always 1, which is obvious by inspection.

Band pass:

M (ω)=K⋅| 2ζω0ω

√(ω0
2−ω2)2+(2ζω0ω)2|

Band stop:

M (ω)=K⋅| ω0
2−ω2

√(ω0
2−ω2)2+(2ζω0ω)2|
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Phase Response for Second-Order Filters

Finding the phase response is done by calculating Φ(s) which is the angular response of F(s):

Φ(s)=arg [ F(s)]=arg [
N (s)
D(s)

]=arg [N (s)]−arg [ D(s)]

Where N(s) and D(s) are numerator and denominator of F(s).

This is traditionally done by using inverse tangens, (arctan or tan-1), but this method is tedious, as it 
only provides results in the -π/2 < θ < π/2  range, giving ambiguous results and needing further 
computation to find the actual angle/phase.
θ is the symbol for the resulting angle.

An easier approach is using the ”two-argument arctangent” function, arctan2(x,y) or atan2(x,y), 
which delivers results in the -π < θ ≤ π range as needed. 
Arctan2 is not suitable for pen-and paper calculation, but is generally available in spreadsheet and 
mathematical programs.

The goal again is: find equations with only one real variable ω for further analysis.

Using arctan2 instead of arg, replacing s with jω, and using Re[] and Im[] to extract the real and 
imaginary values, we get:

Φ(ω)=arctan2 (Re[ N ( jω)] , Im[N ( j ω)])−arctan2 (Re [ D( j ω)] , Im[ D( jω)])

(Φ(ω), as Im[] and Re[] eliminate j, leaving only real values).

Low pass:
 Φ(ω)=arctan2 (ω0

2 , 0)−arctan2 ((ω0
2−ω2) ,(2ζ ω0 ω))

High pass:
 Φ(ω)=arctan2 (−ω2 ,0)−arctan2 ((ω0

2−ω2) ,(2ζ ω0 ω))

All pass:
 Φ(ω)=arctan2 ((ω0

2−ω2) ,(−2ζ ω0 ω))−arctan2((ω0
2−ω2), (2ζω0 ω))

Band pass: 
 Φ(ω)=arctan2(0 ,2ζ ω0 ω)−arctan2 ((ω0

2−ω2) ,(2ζ ω0 ω))

Band stop:
 Φ(ω)=arctan2((ω0

2−ω2) , 0)−arctan2 ((ω0
2−ω2) ,(2ζ ω0 ω))

Note that the denominator part is always the same, consistent with the M(ω) calculations.

© Anders Bøcher 2023. License: Creative Commons CC BY 4.0



Comments on Higher Order Filters:

The general equations (framed) for calculating magnitude and phase response shown in the previous 
section always apply, but the ones specific to second order filters only to those.
Simply multiplying first and second order magnitude responses will not work, nor will adding the 
phase responses.

For third, fourth, fifth etc. order filters, multiplication of their first and second order complex 
transfer functions is necessary to get 3rd, 4th, 5th etc. order polynomiums. Using those, the 
magnitude/phase calculation is possible and correct.

Why? Because each first or second order function usually have different ω0 and ζ values. 

Comments on Group Delay

Group delay is a function that expresses how much each signal frequency is delayed when passing 
through a system, in this case an analog filter. It is valuable when predicting signal integrity and  
step or impulse responses in the time domain.

Group delay is the derivative of phase response, meaning that a linear phase response over 
frequency equals a constant group delay.
The group delay function τg(ω) is defined as:

τg(ω)=−
d Φ(ω)

d ω

Unfortunately, arctan2(y,x) does not lend itself easily to differentiation, which means numerical 
methods are indicated.
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