Poll

Some complex problem solving was done by simulating millions of possibilities, interrested?

No, I’m a Math Wizard, simulating is for dummies
No, I don’t like to program. I always try resistor values real life
Not really, I already know how
Yes, how did you get accurate values without applying complex mathematics

Author Topic: No way of bypassing this Lasertrigger circuit - and about calculating stuff  (Read 2322 times)

0 Members and 1 Guest are viewing this topic.

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
In your by lasers beams protected house of intellectual terror mission impossible Tom Cruise is comming for your very secret electronic designs. He bring his own set of lasers to satisfy the sensors, will he succeed or will it be impossible?

Not with this circuit! because it drives not one, but two resettable latches. One that signals when a laser beam is broken. One that signals that the sensor is exposed when it shouldn’t. Those states are alternatively checked by pulsing the laser beam at roughly 7 kHz.
If the beam is broken, the laser will for safety reasons shut down (it served it’s purpose anyway). This will as a side effect also trigger the other latch - I won’t remedy that. Another quirk is that it starts up being activated. Used with a micro controller a reset on both latches should remedy that.

I will search for a more suited photo diode, because the one I use has a very high impedance in exposed and non-exposed conditions. However the discrimination between the laser exposure and surrounding light exposure is very good. Measuring millivolts with high impedances and long leads make it now too sensitive for external interference. Besides that it really works well, especially using the triangle wave to disable comparisons during signal transitions.

The latches are also designed in such a way that a signal triumphs a reset.

So no one is crossing my beam  >:D.

Any comments or suggestions?
« Last Edit: January 15, 2019, 09:55:57 pm by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #1 on: January 13, 2019, 11:47:25 pm »
Below I posted the calculations for this project. It uses a self-made scripting tool, which is able to define tasks. Within those tasks one can do calculations and simulations, or whatever. A task essentially produces / provides information to use either in schematics or for further calculations. The tool ensures every task is executed in the right order and only once.

Technically a task sets fields of a newly created object. Depended task can read those fields for further calculations. I always report what is "consumed" from that object. In this way it is very well documented how data travels and what is affected by what when things change.
There is also the possibility of creating asserts: states, values that you want to guard. If for example I tested a forward voltage on 20 mA, then I might want to ensure that the true current is calculated and checked against 20 mA. So when modifications alter the current, the task will fail. Giving the opportunity to do a new measurement and updating the forward voltage and current.

Creating such a script is a lot of work, but is also supports thinking in a very modular way.

The coarse dependency information NEEDS and NEEDED BY is generated, so no need to do that by hand.

In the near future I will probably upgrade the BOM scripts (https://github.com/HendriXML/KiCad-BOM-reporter) to report calculated values against schematic values.
« Last Edit: January 14, 2019, 02:50:45 am by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Calculations of Lasertrigger circuit
« Reply #2 on: January 13, 2019, 11:48:49 pm »

CHOOSEN VALUES
NEEDED BY
  Empirical values TL082
  Empirical values 1N4004
  Exposed sensor LED
  Break signal LED
  Laserdiode control
  Triangle wave voltages
  Virtual ground en reference voltage dividers
  Comparator latches
PROVIDES
  voltVCC                  : 5,00 V
  ohmR3                    : 100 kΩ
  ohmR6                    : 47 kΩ
  ohmR23                   : 4,7 kΩ
  ohmRV1                   : 1 kΩ
  ohmRV3                   : 500 Ω
  ampVirtGndVoltageDividerTarget: 7,00 mA
  voltVirtualGroundMargin  : 250,00 mV

DATASHEET VALUES 2N7000
NEEDED BY
  Laserdiode control
  Comparator latches
PROVIDES
  ohmOnResistance          : 6,00 Ω

EMPIRICAL VALUES 2N3906 Q3
NEEDED BY
  Laserdiode control
PROVIDES
  voltEC                   : 600,00 mV

DATASHEET VALUES 2N3906 Q3
NEEDED BY
  Laserdiode control
PROVIDES
  factAmplificationAt30mA  : 30,00 A
  voltBESat                : 700,00 mV

DATASHEET VALUES LM339
NEEDED BY
  Exposed sensor LED
  Break signal LED
  Comparator latches
PROVIDES
  voltLowlevelOutputVoltage: 150,00 mV

EMPIRICAL VALUES TL082
NEEDS
  Choosen values
NEEDED BY
  Virtual ground target voltage
  Triangle wave voltages
CONSUMES
Choosen values
  voltVCC                  : 5,00 V
PROVIDES
  voltSwingToGroundNominal : 40,00 mV
  voltSwingToVCCNominal    : 3,70 V

EMPIRICAL VALUES 1N4004
NEEDS
  Choosen values
NEEDED BY
  Virtual ground en reference voltage dividers
CONSUMES
Choosen values
  ampVirtGndVoltageDividerTarget: 7,00 mA
PROVIDES
  voltForwardVoltage       : 700,00 mV

EMPIRICAL VALUES RED LED
NEEDED BY
  Break signal LED
PROVIDES
  voltForwardVoltage       : 2,00 V
  ampForwardCurrent        : 20,00 mA

EMPIRICAL VALUES BLUE LED
NEEDED BY
  Exposed sensor LED
PROVIDES
  voltForwardVoltage       : 3,40 V
  ampForwardCurrent        : 20,00 mA

EMPIRICAL VALUES LASER DIODE
NEEDED BY
  Laserdiode control
INTERMEDIATE
  voltVoltageDrop          : 726,00 mV
  voltPackageVoltage       : 3,00 V
PROVIDES
  ohmSerieResistor         : 33,00 Ω
  voltForwardVoltage       : 2,27 V
  ampForwardCurrent        : 22,00 mA

EXPOSED SENSOR LED
NEEDS
  Choosen values
  Empirical values blue LED
  Datasheet values LM339
CONSUMES
Choosen values
  voltVCC                  : 5,00 V
Empirical values blue LED
  voltForwardVoltage       : 3,40 V
  ampForwardCurrent        : 20,00 mA
Datasheet values LM339
  voltLowlevelOutputVoltage: 150,00 mV
INTERMEDIATE
  voltR21                  : 1,45 V
  ohmCalcR32               : 72,50 Ω
PROVIDES
  ohmR32                   : 75 Ω

BREAK SIGNAL LED
NEEDS
  Choosen values
  Empirical values red LED
  Datasheet values LM339
CONSUMES
Choosen values
  voltVCC                  : 5,00 V
Empirical values red LED
  voltForwardVoltage       : 2,00 V
  ampForwardCurrent        : 20,00 mA
Datasheet values LM339
  voltLowlevelOutputVoltage: 150,00 mV
INTERMEDIATE
  voltR21                  : 2,85 V
  ohmCalcR21               : 142,50 Ω
PROVIDES
  ohmR21                   : 150 Ω

LASERDIODE CONTROL
NEEDS
  Choosen values
  Empirical values laser diode
  Empirical values 2N3906 Q3
  Datasheet values 2N3906 Q3
  Datasheet values 2N7000
CONSUMES
Choosen values
  voltVCC                  : 5,00 V
  ohmR23                   : 4,70 kΩ
Empirical values laser diode
  ohmSerieResistor         : 33,00 Ω
  voltForwardVoltage       : 2,27 V
  ampForwardCurrent        : 22,00 mA
Empirical values 2N3906 Q3
  voltEC                   : 600,00 mV
Datasheet values 2N3906 Q3
  factAmplificationAt30mA  : 30
  voltBESat                : 700,00 mV
Datasheet values 2N7000
  ohmOnResistance          : 6,00 Ω
INTERMEDIATE
  voltR4sInternal          : 2,13 V
  ohmR4sInternal           : 96,64 Ω
  ohmCalcR4                : 63,64 Ω
  ampGndBaseQ3             : 733,33 μA
  ampR23                   : 148,94 μA
  ampR5                    : 882,27 μA
  ohmR5sOnResistance       : 4,87 kΩ
  ohmCalcR5                : 4,87 kΩ
PROVIDES
  ohmR4                    : 68 Ω
  ohmR5                    : 4,7 kΩ

VIRTUAL GROUND TARGET VOLTAGE
NEEDS
  Empirical values TL082
NEEDED BY
  Triangle wave voltages
  Virtual ground en reference voltage dividers
CONSUMES
Empirical values TL082
  voltSwingToGroundNominal : 40,00 mV
  voltSwingToVCCNominal    : 3,70 V
PROVIDES
  voltNominalValue         : 1,87 V

TRIANGLE WAVE VOLTAGES
NEEDS
  Choosen values
  Empirical values TL082
  Virtual ground target voltage
NEEDED BY
  Virtual ground en reference voltage dividers
CONSUMES
Virtual ground target voltage
  voltNominalValue         : 1,87 V
Empirical values TL082
  voltSwingToGroundNominal : 40,00 mV
  voltSwingToVCCNominal    : 3,70 V
Choosen values
  ohmR6                    : 47,00 kΩ
  ohmR3                    : 100,00 kΩ
PROVIDES
  voltLow                  : 1,01 V
  voltHigh                 : 2,73 V

VIRTUAL GROUND EN REFERENCE VOLTAGE DIVIDERS
NEEDS
  Empirical values 1N4004
  Choosen values
  Virtual ground target voltage
  Triangle wave voltages
GOAL
Determine resistance values such that:
  VirtGnd can be set voltVirtualGroundMargin higher or lower than the determined one with RV3
  Voltage difference between RefLow - RefHigh can be set to 25% of the voltage difference between voltTriangleWaveLow and voltTriangleWaveHigh
  Voltage difference between RefLow - RefHigh can be set 10% higher than the voltage difference between voltTriangleWaveLow and voltTriangleWaveHigh
  The maximum settable voltSettableVirtGndLow should go as lease low as voltSettableVirtGndLowMax
  The minimal settable voltSettableVirtGndHigh should go at least as high as voltSettableVirtGndHighMin
  RV1 mid and RV3 mid should be optimized so that voltVirtGndCtrl matches voltVirtGndTarget
  Maximum current should be optimized to ampVirtGndVoltageDividerTarget
CONSUMES
Choosen values
  ampVirtGndVoltageDividerTarget: 7,00 mA
  voltVCC                  : 5,00 V
  ohmRV1                   : 1,00 kΩ
  ohmRV3                   : 500,00 Ω
  voltVirtualGroundMargin  : 250,00 mV
Empirical values 1N4004
  voltForwardVoltage       : 700,00 mV
Virtual ground target voltage
  voltVirtGndTarget        : 1,87 V
Triangle wave voltages
  voltTriangleWaveLow      : 1,01 V
  voltTriangleWaveHigh     : 2,73 V
INTERMEDIATE
  voltVCCMinusD3           : 4,30 V
  voltTriangleWaveDelta    : 1,72 V
  voltSettableReferenceDeltaLowMax: 430,05 mV
  voltSettableReferenceDeltaHighMin: 1,89 V
  voltSettableVirtGndLowMax: 1,62 V
  voltSettableVirtGndHighMin: 2,12 V
  voltSettableVirtGndLow   : 618,36 mV
  voltSettableVirtGndHigh  : 2,25 V
  voltSettableRefDeltaLow  : 408,01 mV
  voltSettableRefDeltaHigh : 1,91 V
  voltVirtGndMidDif        : 371,54 μV
  ampTotMaxDif             : 399,22 μA
  ampMaxAmp                : 7,40 mA
PROVIDES
  ohmR1                    : 56 Ω
  ohmR2                    : 1,8 kΩ
  ohmR12                   : 1,8 kΩ
  ohmR13                   : 56 Ω
  ohmR14                   : 470 Ω

COMPARATOR LATCHES
NEEDS
  Choosen values
  Datasheet values 2N7000
  Datasheet values LM339
GOAL
Determine resistance values such that:
  When BeamBreak signal is high the latch is always low
  When BeamBreak signal is low, a closed switch SW1 can set the latch high
  When the output of U3A is high it stays high unless switch SW1 is pushed and BeamBreak signal is low
  Maximum current should acceptable when switch is closed and Q2 is conducting
  Different voltages should have good spreading
CONSUMES
Choosen values
  voltVCC                  : 5,00 V
Datasheet values 2N7000
  ohmOnResistance          : 6,00 Ω
Datasheet values LM339
  voltLowlevelOutputVoltage: 150,00 mV
  OptimumDelta             : 3,33294702420633
PROVIDES
  ohmR15                   : 12 kΩ
  ohmR16                   : 27 kΩ
  ohmR17                   : 82 kΩ
  ohmR18                   : 33 kΩ
  ohmR20                   : 39 kΩ
  ohmR29                   : 12 kΩ
  ohmR28                   : 27 kΩ
  ohmR30                   : 82 kΩ
  ohmR27                   : 33 kΩ
  ohmR31                   : 39 kΩ


« Last Edit: January 16, 2019, 04:16:50 pm by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline Yansi

  • Super Contributor
  • ***
  • Posts: 3893
  • Country: 00
  • STM32, STM8, AVR, 8051
Re: No way of bypassing this Lasertrigger circuit
« Reply #3 on: January 14, 2019, 12:01:32 am »
You seem you have had just too much fun building this circuit.

BTW, most IR opto-gates are made using a double modulation. First, there is a carrier frequency (usualy couple tens of kHz), so the light can be easily distinguished from a background noise and DC component of the ambient light completely canceled out at the sensor (just narrowband AC amplifiers/filters present). Then the carrier is OOK modulated at a couple of hundred Hz.

Transmit side can be implement by a pair of oscillators (for example a couple of 555 timers), the receive side is quite simple too, when using an off-the shelf IR receiver with integrated demodulator (those obligatory 36, 38, 56kHz  IR remote control receivers), the evaluating logic can then be made using a missing pulse detector and a pulse stretcher (which, quite funnily could be made also using a couple of 555 timers).  ;)
 
The following users thanked this post: HendriXML

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #4 on: January 14, 2019, 12:03:18 am »
Instead of reporting all tasks, it is also possible to zoom in on one and its required tasks.
« Last Edit: January 14, 2019, 01:39:58 am by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #5 on: January 14, 2019, 12:13:08 am »
You seem you have had just too much fun building this circuit.

BTW, most IR opto-gates are made using a double modulation. First, there is a carrier frequency (usualy couple tens of kHz), so the light can be easily distinguished from a background noise and DC component of the ambient light completely canceled out at the sensor (just narrowband AC amplifiers/filters present). Then the carrier is OOK modulated at a couple of hundred Hz.

Transmit side can be implement by a pair of oscillators (for example a couple of 555 timers), the receive side is quite simple too, when using an off-the shelf IR receiver with integrated demodulator (those obligatory 36, 38, 56kHz  IR remote control receivers), the evaluating logic can then be made using a missing pulse detector and a pulse stretcher (which, quite funnily could be made also using a couple of 555 timers).  ;)
I'm still and will be in the stage of just experimenting for a lot of time. I don't think I will ever take it in use. It is indeed a nice way of learning and trying to progress. The same functionality could also be made with an Arduino, but what is the fun in that :D. Thanks for your suggestion though, I will certainly give it some thought.
« Last Edit: January 14, 2019, 12:16:51 am by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #6 on: January 15, 2019, 10:42:51 am »
When I designed this circuit I also only used components that where at hand and are very basic. For some components it means pushing them to their limits in regard to speed, noise, offsets, etc. I learned a lot that way, knowledge that can be used in other projects. Using specialized IC’s is probably more reliable, but would for me be less satisfying.

My main goal is building up skills, like how to do complex problem solving with only simple math, how make good use of the oscilloscope, how to interpreted datasheet values, etc. Finally finding a way to do this in a documenting way, preserving the knowledge for other projects.

In that regard a successful project: this sword will cut.  :)
« Last Edit: January 15, 2019, 10:45:16 am by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline xani

  • Frequent Contributor
  • **
  • Posts: 400
Re: No way of bypassing this Lasertrigger circuit
« Reply #7 on: January 15, 2019, 01:00:40 pm »
Clearly if you want max security you should instead beam AES-encoded and signed (or even go whole hog with ECDH and public/private key encryption) stream that sends ever-increasing number(to avoid replay attack) to the receiver  8)
 

Offline mycroft

  • Regular Contributor
  • *
  • Posts: 70
  • Country: br
Re: No way of bypassing this Lasertrigger circuit
« Reply #8 on: January 15, 2019, 01:42:51 pm »
Beware of real life! In real life a fly or a leaf can interrupt the beam. You will have too many false positives!
 

Online tggzzz

  • Super Contributor
  • ***
  • Posts: 19506
  • Country: gb
  • Numbers, not adjectives
    • Having fun doing more, with less
Re: No way of bypassing this Lasertrigger circuit
« Reply #9 on: January 15, 2019, 01:57:56 pm »
In every system where safety is in question, you should concentrate on how the system can fail. That's much more difficult than how the system works. Understanding that is a key difference between professional engineering and amateur tinkering.

Start by understanding that extra complexity means extra failure mechanisms.
Continue by determining what will happen if a component or connection fails.
And don't forget to consider all the things that are outside the system.
There are lies, damned lies, statistics - and ADC/DAC specs.
Glider pilot's aphorism: "there is no substitute for span". Retort: "There is a substitute: skill+imagination. But you can buy span".
Having fun doing more, with less
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #10 on: January 15, 2019, 02:33:57 pm »
Beware of real life! In real life a fly or a leaf can interrupt the beam. You will have too many false positives!
Purely hypothetical, because the circuit is not really worth defending...
If a fly crosses the beam it should signal that, that is not really a false possitive in regard to this circuit. If there would be exceptions / margins at this level, then it is also more vulnerable against attack’s. At a higher level when processing the output of this circuit one could define rules that take more things in account. Maybe 2 beams out of 10 should be signaled to set an alarm. Also I hate flies so I don’t want them to intrude as well :).
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #11 on: January 15, 2019, 02:43:36 pm »
In every system where safety is in question, you should concentrate on how the system can fail. That's much more difficult than how the system works. Understanding that is a key difference between professional engineering and amateur tinkering.

Start by understanding that extra complexity means extra failure mechanisms.
Continue by determining what will happen if a component or connection fails.
And don't forget to consider all the things that are outside the system.
Your absolutely right. This circuit is amateurish and for study only, and I really like it in that regard. Installing laserbeams for protection is not very practical. And has very little WAF.

You should see my other circuit:
https://www.eevblog.com/forum/projects/bi-regulated-power-supply/

That one is too sensitive and prone to failure as well, it would really give you the shivers. But is also an exploration of possibilities. One should allow themselves to do projects like that as well. And maybe only thoose before having sufficient skills.
« Last Edit: January 15, 2019, 03:11:26 pm by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Re: No way of bypassing this Lasertrigger circuit
« Reply #12 on: January 15, 2019, 02:50:49 pm »
Clearly if you want max security you should instead beam AES-encoded and signed (or even go whole hog with ECDH and public/private key encryption) stream that sends ever-increasing number(to avoid replay attack) to the receiver  8)
I think random signals would suffice as well, ‘cause the end point knows what to expect!
In both cases the system could be attacked by copying the laser pulses. But that can be made very hard to implement when the sensor is in a thin tube. The copying laser in that case won’t be able to hit the sensor without blocking the sytems one.
« Last Edit: January 15, 2019, 07:19:55 pm by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
BOM with report of calculated values
« Reply #13 on: January 15, 2019, 09:31:33 pm »
 :PI added functionality to my BOM reporter (just another script in the same tool) to merge calculated values in the designator report as well. If calculated values exists, they are reported on a second line. Specifications can also include powerratings, voltage ratings, etc. This way lots of information can be packed in to a single report. Another tab, the actual BOM report shows where stuff is located and how much (PartKeepr), I'll post that as well.
By reporting the max current / voltage a resistor can take, it is easy to check which resistors might be at risk and do a calculation of its power consumption. The E-series are shown, because I prefer to use lower E-serie values over higher ones, because then its easer to maintain a stock.
« Last Edit: January 16, 2019, 04:24:25 pm by HendriXML »
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Designator specifications
« Reply #14 on: January 15, 2019, 09:34:41 pm »

Designator specifications

C1    10nF  E3                50V    ceramic    THT capacitor       

D1   LED                                            led             
D2    3,3V  E6    1W 303mA                          zener diode     
D3   LDD                                            photodiode       
D4   1N4004                                         diode           
D5   LED                                            led             
D6   1N5817                                         schottky diode   
D7   LED                                            led             
D8   1N5817                                         schottky diode   
D9   1N5817                                         schottky diode   
D10  1N5817                                         schottky diode   
D11  1N5817                                         schottky diode   
D12  1N5817                                         schottky diode   

Q1   2N7000                                         n-mosfet         
Q2   2N7000                                         n-mosfet         
Q3   2N3906                                         pnp transistor   
Q4   2N3904                                         npn transistor   
Q5   2N3906                                         pnp transistor   
Q6   2N7000                                         n-mosfet         
Q7   2N7000                                         n-mosfet         

R1     56Ω E12 250mW 3,74V|66,8mA 2% metal film THT resistor         
       56Ω E12                                                       
R2   1,8kΩ E12 250mW 21,2V|11,7mA 2% metal film THT resistor         
     1,8kΩ E12                                                       
R3   100kΩ  E3 250mW 158V|1,58mA  2% metal film THT resistor         
     100kΩ  E3                                                       
R4     68Ω  E6 250mW 4,12V|60,6mA 2% metal film THT resistor         
       68Ω  E6                                                       
R5   4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
     4,7kΩ  E3                                                       
R6    47kΩ  E3 250mW 108V|2,3mA   2% metal film THT resistor         
      47kΩ  E3                                                       
R7    47kΩ  E3 250mW 108V|2,3mA   2% metal film THT resistor         
R8    12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT resistor         
R9    180Ω E12 250mW 6,7V|37,2mA  2% metal film THT resistor         
R10   51kΩ E24 250mW 112V|2,21mA  2% metal film THT resistor         
R11  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R12  1,8kΩ E12 250mW 21,2V|11,7mA 2% metal film THT resistor         
     1,8kΩ E12                                                       
R13    56Ω E12 250mW 3,74V|66,8mA 2% metal film THT resistor         
       56Ω E12                                                       
R14   470Ω  E3 250mW 10,8V|23mA   2% metal film THT resistor         
      470Ω  E3                                                       
R15   12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT resistor         
      12kΩ E12                                                       
R16   27kΩ E12 250mW 82,1V|3,04mA 2% metal film THT resistor         
      27kΩ E12                                                       
R17   82kΩ E12 250mW 143V|1,74mA  2% metal film THT resistor         
      82kΩ E12                                                       
R18   33kΩ  E6 250mW 90,8V|2,75mA 2% metal film THT resistor         
      33kΩ  E6                                                       
R19  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R20   39kΩ E12 250mW 98,7V|2,53mA 2% metal film THT resistor         
      39kΩ E12                                                       
R21   150Ω  E6 250mW 6,12V|40,8mA 2% metal film THT resistor         
      150Ω  E6                                                       
R22   12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT resistor         
R23  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
     4,7kΩ  E3                                                       
R24  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R25  100kΩ  E3 250mW 158V|1,58mA  2% metal film THT resistor         
R26  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R27   33kΩ  E6 250mW 90,8V|2,75mA 2% metal film THT resistor         
      33kΩ  E6                                                       
R28   27kΩ E12 250mW 82,1V|3,04mA 2% metal film THT resistor         
      27kΩ E12                                                       
R29   12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT resistor         
      12kΩ E12                                                       
R30   82kΩ E12 250mW 143V|1,74mA  2% metal film THT resistor         
      82kΩ E12                                                       
R31   39kΩ E12 250mW 98,7V|2,53mA 2% metal film THT resistor         
      39kΩ E12                                                       
R32    75Ω E24 250mW 4,33V|57,7mA 2% metal film THT resistor         
       75Ω E24                                                       
R33  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R34  4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT resistor         
R35  100kΩ  E3 250mW 158V|1,58mA  2% metal film THT resistor         

RV1    1kΩ  E3                                      variable resistor
       1kΩ  E3                                                       
RV2    5kΩ                                          variable resistor
RV3   500Ω                                          variable resistor
      500Ω                                                           

SW1  Reset latch                                    component       
SW2  SW_Push                                        component       

U1   TL082                                          op amp           
U2   LM339                                          comparator       
U3   LM339                                          comparator       
“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 

Offline HendriXMLTopic starter

  • Super Contributor
  • ***
  • Posts: 1085
  • Country: nl
    • KiCad-BOM-reporter
Bill of materials
« Reply #15 on: January 15, 2019, 09:40:16 pm »

Bill of materials
Title: LaserTrigger
Amount: 1x


Resistors
  2x   56Ω E12 250mW 3,74V|66,8mA 2% metal film THT         (R1, R13)
40x   56Ω E12 250mW 3,74V|66,8mA 2% metal film THT         (40x #46 @VKD02R01K07)

  1x   68Ω  E6 250mW 4,12V|60,6mA 2% metal film THT         (R4)
40x   68Ω  E6 250mW 4,12V|60,6mA 2% metal film THT         (40x #47 @VKD02R01K07)

  1x   75Ω E24 250mW 4,33V|57,7mA 2% metal film THT         (R32)
22x   75Ω E24 250mW 4,33V|57,7mA 2% metal film THT         (22x #48 @VKD02R01K07)

  1x  150Ω  E6 250mW 6,12V|40,8mA 2% metal film THT         (R21)
139x  150Ω  E6 250mW 6,12V|40,8mA 2% metal film THT         (139x #52 @VKD02R02K01)

  1x  180Ω E12 250mW 6,7V|37,2mA  2% metal film THT         (R9)
36x  180Ω E12 250mW 6,7V|37,2mA  2% metal film THT         (36x #53 @VKD02R02K03)

  1x  470Ω  E3 250mW 10,8V|23mA   2% metal film THT         (R14)
139x  470Ω  E3 250mW 10,8V|23mA   2% metal film THT         (139x #62 @VKD02R02K05)

  2x 1,8kΩ E12 250mW 21,2V|11,7mA 2% metal film THT         (R2, R12)
20x 1,8kΩ E12 250mW 21,2V|11,7mA 2% metal film THT         (20x #447 @VKD02R03K03)

  8x 4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT         (R5, R11, R19, R23, R24, R26, R33, R34)
125x 4,7kΩ  E3 250mW 34,2V|7,29mA 2% metal film THT         (125x #81 @VKD02R03K05)

  4x  12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT         (R8, R15, R22, R29)
37x  12kΩ E12 250mW 54,7V|4,56mA 2% metal film THT         (37x #88 @VKD02R04K01)

  2x  27kΩ E12 250mW 82,1V|3,04mA 2% metal film THT         (R16, R28)
40x  27kΩ E12 250mW 82,1V|3,04mA 2% metal film THT         (40x #93 @VKD02R04K03)

  2x  33kΩ  E6 250mW 90,8V|2,75mA 2% metal film THT         (R18, R27)
140x  33kΩ  E6 250mW 90,8V|2,75mA 2% metal film THT         (140x #96 @VKD02R04K05)

  2x  39kΩ E12 250mW 98,7V|2,53mA 2% metal film THT         (R20, R31)
40x  39kΩ E12 250mW 98,7V|2,53mA 2% metal film THT         (40x #98 @VKD02R04K05)

  2x  47kΩ  E3 250mW 108V|2,3mA   2% metal film THT         (R6, R7)
128x  47kΩ  E3 250mW 108V|2,3mA   2% metal film THT         (128x #100 @VKD02R04K05)

  1x  51kΩ E24 250mW 112V|2,21mA  2% metal film THT         (R10)
38x  51kΩ E24 250mW 112V|2,21mA  2% metal film THT         (38x #102 @VKD02R04K05)

  2x  82kΩ E12 250mW 143V|1,74mA  2% metal film THT         (R17, R30)
40x  82kΩ E12 250mW 143V|1,74mA  2% metal film THT         (40x #107 @VKD02R04K07)

  3x 100kΩ  E3 250mW 158V|1,58mA  2% metal film THT         (R3, R25, R35)
131x 100kΩ  E3 250mW 158V|1,58mA  2% metal film THT         (131x #109 @VKD02R05K01)


Variable resistors
  1x  500Ω                                                  (RV3)
  9x  500Ω                                                  (9x #248 @VKD08R01K01)

  1x   1kΩ  E3                                              (RV1)
  5x   1kΩ  E3                                              (5x #323 @VKD08R01K01)

  1x   5kΩ                                                  (RV2)
10x   5kΩ                                                  (10x #251 @VKD08R01K02)


Capacitors
  1x  10nF  E3                50V    ceramic    THT         (C1)
30x  10nF  E3                50V    ceramic    THT         (30x #216 @VKD01R03K05)


Zener diodes
  1x  3,3V  E6    1W 303mA                                  (D2)
15x  3,3V  E6    1W 303mA                      THT 1N4728  (15x #233 @VKD08R02K01)


Diodes
  1x 1N4004                                                 (D4)
10x 1N4004     400V              1A       1,1V             (10x #255 @VKD08R03K02)


Schottky diodes
  6x 1N5817                                                 (D6, D8, D9, D10, D11, D12)
10x 1N5817      20V              1A      450mV             (10x #259 @VKD08R03K03)


Photodiodes
  1x LDD                                                    (D3)
  4x LDD                                                    (4x #21 @VKD01R04K05)


NPN transistors
  1x 2N3904                                                 (Q4)
240x 2N3904                                                 (240x #324 @VKD08R04K01)


PNP transistors
  2x 2N3906                                                 (Q3, Q5)
240x 2N3906                                                 (240x #220 @VKD08R04K01)


N-MOSFETs
  4x 2N7000                                                 (Q1, Q2, Q6, Q7)
190x 2N7000                                                 (190x #150 @VKD03R02K01)


Op amps
  1x TL082                                                  (U1)
16x TL082                                          TL082CP (16x #159 @VKD03R03K07)


Comparators
  2x LM339                                                  (U2, U3)
30x LM339                                          LM339N  (30x #167 @VKD03R05K01)


LEDs
  3x LED                                                    (D1, D5, D7)


Components
  1x Reset latch                                            (SW1)

  1x SW_Push                                                (SW2)



“I ‘d like to reincarnate as a dung beetle, ‘cause there’s nothing wrong with a shitty life, real misery comes from high expectations”
 


Share me

Digg  Facebook  SlashDot  Delicious  Technorati  Twitter  Google  Yahoo
Smf