I wouldn't mind doing it that way, the thing is:
80 mA (fan) + 2*40 mA (led displays) + 40 mA (Arduino) + 30 mA (relay) makes for a 230 mA load, plus regulating circuitry. (It'll be lower on average, specially the fan, just doing a worst case calculation here).
The 15 Vac transformer is 1A rated, resulting in practical ≈620 mA max current as per the chart in #135. I would be limited to ≈ 390 mA output current, and disipating ≈5W on the regulator. Just a thought. Thanks for the input.
Juan
hi,
in real life you don't need tap switching.I don't do it even for 5 amps/0-27Vdc (limits of my 2'nd power supply).So I review my own theory, just cut off your budget and pain and series the secondaries, do the regulation and you're done.don't forget measuring current on low side will put problems for a beginner more than adding 4 $ with high side sensing, the right way to do it in your case.
If you do tap switch for future developement, that's another thing.
Anyway with your current/voltage specs you are well within SOA, you can do tap switch only for echology reasons, but buying relay+diodes+... isn't echological no more, it's just like the big lie buying electrical car will do good to the ozone
I just tried to simplify your design and get you focused on important stuff like keep it simple and get the voltage and current measurement simply and the PS stable.tap switch implies further decisional voltage comparator, watching what happens when commuting if you forgot to remove load you'll have to think what you do with the spike when you switch.imho too complicate for almost zero result.
tap switching method is for amps not for mAmps.But what the hell, I'm talking too much, as I said it before, do as you like
pierre