EEVblog Electronics Community Forum

Electronics => Projects, Designs, and Technical Stuff => Topic started by: Phazer12 on June 01, 2021, 10:58:24 am

Title: LTSpice SCR Model Problems
Post by: Phazer12 on June 01, 2021, 10:58:24 am
Hello!
I cannot get the STMicro BTA2X series SCR's to simulate in LTSpice.  My circuit runs fine with the Littlefuse S602TS  but not the STMicro.  When I use the STMicro model, the simulation runs forever and never ends.

The Littlefuse model seems relatively simple but the STMicro model is more complex and appears to have multiple parts that I don't understand.   The spice models are in the text below.

I am using an .include statement on the schematic and it successfully pulls in the Littlefuse SCR model and other models in the schematic but doesn't work with the STMicro model.
I appreciate any ideas!

Littlefuse model (runs ok)
.SUBCKT S402ES     1  2             3
*       TERMINALS: A  G             K
Qpnp    6          4  1             Pfor      OFF
Qnpn    4          6  5             Nfor      OFF
Rfor    6          4  5G
Rrev    1          4  5G
Rshort  6          5  1MEG
Rlat    2          6  9.09
Ron     3          5  211.3m
Dfor    6          4  Zbrk
Drev    1          4  Zbrk
Dgate   6          5  Zgate
.MODEL  Zbrk       D  (IS=3.2E-16   IBV=100U  BV=400)
.MODEL  Zgate      D  (IS=1E-16     IBV=100U  BV=10      VJ=0.3)
.MODEL  Pfor       PNP(IS=5E-15     BF=1.10   CJE=10p    CJC=5p     TF=0.3U)
.MODEL  Nfor       NPN(IS=1E-12     ISE=1E-9  BF=10.0    RC=0.45    CJE=100p    CJC=5p      TF=0.3U)
.ENDS


STMicroelectronics model (simulation runs forever).

***************************************************************************
*             TRIACs PSpice Models                                      *
***************************************************************************
* Note :
*
*   This TRIAC model simulates:
*   -Igt (the same for all quadrants) MAX of the specification
*note: for 4 quadrants TRIAC, IGT Q4 is taken into account for all quadrants
*   -Il  (the same for all quadrants) Typ of the specification
*   -Ih  (the same for both polarity) Typ of the specification
*   -VDRM
*   -VRRM
*   -(dI/dt)c and (dV/dt)c parameters are simulated only if those
*    constraints exceed very highly the specified limits.
*   -Power dissipation is realistic and correspond to a typical TRIAC
*
*   All these parameters are constant, and don't vary neither with
*   temperature nor other parameters.
*   
*   The "STANDARD" parameter switch between 4 quadrants TRIACs (STANDARD = 1)
*   and 3 quadrants TRIACs (STANDARD = 0).
*   The "STANDARD" parameter maintains or suppress the triggering possibility of
*   the TRIAC in the fourth quadrant, and has absolutely NO EFFECT on other 
*   parameters. 
*
*   For a correct triac behavior, the "Maximum step size" must be below
*   or equal 20µs.
*
*
*
*$
.subckt Triac_ST A K G PARAMS:
+ Vdrm=400v     
+ Igt=20ma
+ Ih=6ma       
+ Rt=0.01
+ Standard=1
*
* Vdrm : Repetitive forward off-state voltage
* Ih   : Holding current
* Igt  : Gate trigger current
* Rt   : Dynamic on-state resistance
* Standard : Differenciation between Snubberless and Standard TRIACs
* (Standard=0 => Snubberless TRIACs, Standard=1 => Standard TRIACs)
*
****************************
* Power circuit *
****************************
*
****************************
*Switch circuit*
****************************
* Q1 & Q2 Conduction
S_S3           A Plip1 positive 0 Smain
*RS_S3         positive 0 1G
D_DAK1         Plip1 Plip2 Dak
R_Rlip         Plip1 Plip2  1k
V_Viak         Plip2 K DC 0 AC 0
*
* Q3 & Q4 Conduction
S_S4           A Plin1 negative 0 Smain
*RS_S4         negative 0 1G
D_DKA1         Plin2 Plin1 Dak
R_Rlin         Plin1 Plin2  1k
V_Vika         K Plin2 DC 0 AC 0 
****************************
*Gate circuit*
****************************
R_Rgk          G K  10G 
D_DGKi         Pg2 G Dgk
D_DGKd         G Pg2 Dgk
V_Vig          Pg2 K DC 0 AC 0
R_Rlig         G Pg2  1k 
*
****************************
*Interface circuit*
****************************
* positive pilot
R_Rp              Controlp positive  2.2 
C_Cp              0 positive  1u
E_IF15OR3         Controlp 0 VALUE {IF(  ( (V(CMDIG)>0.5) | (V(CMDILIH)>0.5) | (V(CMDVdrm)>0.5) ),400,0 )}
*
* negative pilot
R_Rn              Controln negative  2.2   
C_Cn              0 negative  1u 
E_IF14OR3         Controln 0 VALUE {IF(  ( (V(CMDIG)>0.5) | (V(CMDILIHN)>0.5) |  (V(CMDVdrm)>0.5) ),400,0 )}
*
****************************
* Pilots circuit *
****************************
****************************
* Pilot Gate     *
****************************
E_IF1IG             inIG 0 VALUE {IF(  ( ABS(I(V_Vig)) ) > (Igt-1u) ,1,0 )}
E_MULT2MULT         CMDIG 0 VALUE {V(Q4)*V(inIG)}
E_IF2Quadrant4      Q4 0 VALUE {IF(((I(V_Vig)>(Igt-0.000001))&((V(A)-V(K))<0)&(Standard==0)),0,1)}
*
****************************
* Pilot IHIL     *
****************************
*
E_IF10IL         inIL 0 VALUE {IF( ((I(V_Viak))>(Ih/2)),1,0 )}
E_IF5IH          inIH 0 VALUE {IF( ((I(V_Viak))>(Ih/3)),1,0 )}
*
* Flip_flop IHIL
E_IF6DIHIL         SDIHIL 0 VALUE {IF((V(inIL)*V(inIH)+V(inIH)*(1-V(inIL))*(V(CMDILIH)) )>0.5,1,0)}
C_CIHIL            CMDILIH 0  1n 
R_RIHIL            SDIHIL CMDILIH  1K 
R_RIHIL2           CMDILIH 0  100Meg 
*
****************************
* Pilot IHILN    *
****************************
*
E_IF11ILn           inILn 0 VALUE {IF( ((I(V_Vika))>(Ih/2)),1,0 )}
E_IF3IHn            inIHn 0 VALUE {IF( ((I(V_Vika))>(Ih/3)),1,0 )}
* Flip_flop IHILn
E_IF4DIHILN         SDIHILN 0 VALUE {IF((V(inILn)*V(inIHn)+V(inIHn)*(1-V(inILn))*(V(CMDILIHN)) )>0.5,1,0)}
C_CIHILn            CMDILIHN 0  1n 
R_RIHILn            SDIHILN CMDILIHN  1K 
R_RIHILn2           CMDILIHN 0  100Meg 
*
****************************
* Pilot VDRM     *
****************************
E_IF8Vdrm           inVdrm 0 VALUE {IF( (ABS(V(A)-V(K))>(Vdrm*1.3)),1,0 )}
E_IF9IHVDRM         inIhVdrm 0 VALUE {IF( (I(V_Viak)>(Vdrm*1.3)/1.2meg)| (I(V_Vika)>(Vdrm*1.3)/1.2meg),1,0)}
* Flip_flop VDRM
E_IF7DVDRM          SDVDRM 0 VALUE {IF((V(inVdrm)+(1-V(inVdrm))*V(inIhVdrm)*V(CMDVdrm) )>0.5,1,0)}
C_CVdrm             CMDVdrm 0  1n 
R_RVdrm             SDVDRM CMDVdrm  100 
R_RVdrm2            CMDVdrm 0  100Meg 
*
****************************
* Switch Model *
****************************
.MODEL Smain VSWITCH Roff=1.2meg Ron={Rt} Voff=0 Von=100
****************
* Diodes Model *
****************
.MODEL  Dak D( Is=3E-12 Cjo=5pf)
.MODEL  Dgk D( Is=1E-16 Cjo=50pf Rs=5)
.ends
*
*********************************************************************
*             TRIACs PSpice Library               *
*********************************************************************
*********************************************************************
*             Standard TRIACs definition             *
*********************************************************************
*
*$
.subckt T4050-6 A K G
X1 A K G Triac_ST params:
+ Vdrm=600v
+ Igt=50ma
+ Ih=85ma
+ Rt=0.010
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T405-700 A K G
X1 A K G Triac_ST params:
+ Vdrm=700v
+ Igt=5ma
+ Ih=10ma
+ Rt=0.120
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T435-700 A K G
X1 A K G Triac_ST params:
+ Vdrm=700v
+ Igt=35ma
+ Ih=35ma
+ Rt=0.120
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T835-8G A K G
X1 A K G Triac_ST params:
+ Vdrm=800v
+ Igt=35ma
+ Ih=35ma
+ Rt=0.05
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T850-8G A K G
X1 A K G Triac_ST params:
+ Vdrm=800v
+ Igt=50ma
+ Ih=75ma
+ Rt=0.05
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T850-6G A K G
X1 A K G Triac_ST params:
+ Vdrm=600v
+ Igt=50ma
+ Ih=75ma
+ Rt=0.05
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T1210-6G A K G
X1 A K G Triac_ST params:
+ Vdrm=600v
+ Igt=10ma
+ Ih=15ma
+ Rt=0.035
+ Standard=1
* 2021 / ST / Rev 0
.ends
*$
.subckt T1050-8G A K G
X1 A K G Triac_ST params:
+ Vdrm=800v
+ Igt=50ma
+ Ih=50ma
+ Rt=0.040
+ Standard=1
* 2021 / ST / Rev 0
.ends
Title: Re: LTSpice SCR Model Problems
Post by: T3sl4co1l on June 01, 2021, 05:07:22 pm
Oh god, it's a pile of IFs.  You can try different simulation settings but that model is cursed.

Tim
Title: Re: LTSpice SCR Model Problems
Post by: Jay_Diddy_B on June 01, 2021, 07:54:15 pm
Phazer12,

The Littelfuse model is for an SCR.

The ST model is for 8 different TRIACs.

An SCR works in one quadrant, positive voltage and positive current with a positive trigger. The model is built around two transistors.

The TRIAC can work with positive or negative voltages and with positive or negative trigger pulses. It is built around four transistors. It is therefore more complicated.

These type of devices can be troublesome in simulation because they containing positive feedback. The positive feedback is the latching action. The positive feedback can cause convergence issues.

Do you need a TRIAC or an SCR?

Jay_Diddy_B
Title: Re: LTSpice SCR Model Problems
Post by: Phazer12 on June 02, 2021, 02:55:06 am
Thanks Jay Diddy.  I don't really need a triac, and SCR will do so I'll use the Littlefuse Sxx65 series.