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Abstract

Modern digital modes for amateur radio tend to require complicated transceiver architectures.  For 
example, most need upper sideband modulation with a very stable local oscillator.  Furthermore, 
methods such as multiple FSK can be susceptible to effects such as intermodulation from strong 
adjacent stations.  Earlier modulations such as CW, which uses on-off keying (OOK), and RTTY45, 
which uses 2 frequency-shift-keying (FSK) were usable on transceivers with much less demanding 
requirements.  Recently, there has been a trend towards sending data with a very low symbol rate (e.g. 
FT8 and QRSS) in order to achieve communication with very low transmitter power and/or with poor 
receiving conditions.  This is a proposal for a simple digital mode, Simple Conversational Amateur 
Messaging Protocol (SCAMP), that can be implemented with OOK or 2FSK for conversational or 
amateur radio contest QSOs, can be implemented with relatively crude transceivers, and on simple 8-
bit microprocessors such as the ATMEGA328P used for the Arduino Uno or Nano.  It has both 
conversational and data transfer modes, but is tailored more to low bit rate text connections.

Introduction

There is now an abundance of amateur radio data modes.  Early digital modes used FSK, for example, 
RTTY45 and its successors in packet radio.  As personal computers became widely available with 
increasing processing power, as well as receivers with stable local oscillators, phase sensitive modes 
such as PSK31 and methods with small frequency shifts such as multiple frequency-shift keying 
(MFSK) (Olivia/Contestia) became possible, adding increased resistance to noise.  Protocols 
specializing in very short messages, synchronized with a global time standard such as JT65/FT8/FT4 
were designed for making QSOs with low power and in poor conditions.  While there have been 
remarkable improvements in amateur radio data modes, with FT8 especially becoming quite popular, 
these require transceivers with very stable local oscillators that are resistant to intermodulation and 
other distortions.  Furthermore, the computation required to decode some of these protocols requires a 
computer with powerful digital signal processing capability.  There are instances when simple 
transmitters and receivers are desirable, that for example may only be capable of OOK (such as is used 
for CW transmission) or FSK (by selecting a PLL frequency or modulating a crystal oscillator).  It 
would be further desirable if the processing ability of a microcontroller (for example, ATMEGA328P) 
was sufficient to encode and decode the data mode modulation.  QRP transceivers, for example, often 
use simplified hardware, based on a PLL synthesizer or crystal oscillator with a direct conversion 



receiver.  Controlled by a microprocessor, such QRP radios can be solar powered, are highly portable, 
and can serve as message relays, for telemetry, or for emergency use. 

A de-facto specification for an efficient, reliable, portable HF communication protocol called 
Automatic Link Establishment exists, as specified in MIL-STD-188/141A.  This protocol uses MFSK, 
forward error correction (FEC), frame interleaving, and automatic repeat request (ARQ), among other 
methods.   This protocol has been very successful for its intended use, however, it requires the kind of 
complex transceivers and modems that this method wishes to avoid.  However, there are aspects of 
such methods that can be adapted.  In particular, few amateur radio modes combine simple modulation 
and forward error correction.  Simple forms of forward error correction can be implemented on 8-bit 
processors, and other techniques like interleaving may also be used.  Most forms of FEC require 
significant processing power to decode and use either dedicated hardware or high speed processors to 
implement methods like the Viterbi or Berlekamp-Massey algorithm.   The extended (24,12,8) Golay 
code has been used in ALE and is a happy medium which achieves a ½ code rate and is able to correct 
3 of 24 bits.  Its primary disadvantage is that its short code length requires that the data is interleaved to
be resistant to long error bursts.  This is problematic for conversational modes for which long latency is
an issue, especially for contesting.  The Walsh/Hadamard codes used in Olivia/Contestia have this 
problem in particular because of their low code rate. The venerable extended (24,12,8) Golay code is a 
compromise solution that can be decoded by an 8-bit microcontroller, has reasonable latency, good 
code rate, and can correct up to 12.5% bit errors.

Modulation layer

The modulation layer is of one of two types:

On Off Keying  (OOK)– The carrier alternates between full power transmission and no transmission as
a non-return to zero (NRZ) line code.  The mark condition (or one bit) is transmitting and the space 
condition (or zero bit) is no transmission.  Care should be taken that the transmitter does not 
significantly chirp the carrier when initiating a transmission.  Envelope modulation may be built into 
the keying circuitry to prevent keyclick.  The interval of each bit (transmitting or not transmitting) is 
identical and is given by the reciprocal of the baud rate.

2 Frequency Shift Keying (FSK) – When transmitting, the carrier alternates between two frequencies 
as a return-to-zero (RZ) line code.  The mark condition corresponds to transmitting at one frequency 
and the space condition is transmitting on the other frequency.  The mark frequency may be higher or 
lower than the space frequency.  The separation between the two is determined by the baud rate.  
Ideally the separation is a multiple of ½ the baud rate, with a multiple of one corresponding to 
minimum shift keying (MSK).  However, it is not expected that the transmitter can achieve a perfect 
separation frequency, nor can the receiver perfectly coherently decode a MSK signal.  Therefore a 
separation equaling the baud rate is used, so that for 100 mark or space intervals per second, these 
would be separated by 100 Hz.  This nominally retains the orthogonality of the mark and space 
conditions but increases the tolerance to error in the separation frequency or local oscillator phase.



Digital Encoding

Messages are sent as 30 bit blocks, in order of most significant bit to least significant bit (left to right as
shown here).  The format of each block is

C XXXX C XXXX C XXXX C XXXX C XXXX C XXXX
MSB                                                                                   LSB

The 24 “X” are 24 data bits to be sent in the block which are a Golay code word.  Each “C” is the 
complement of the bit immediately following it.  This ensures there is no more than five consecutive 
mark or spaces (ones or zeros) in a valid codeword or consecutive codewords.  The transition between 
the mark and space condition is used to aid in clock recovery and to allow an initial or 
resynchronization phase to be recognized.

Golay code word

Each Golay code word consists to two halves.

PPPP PPPP PPPP XXXX XXXX XXXX
MSB                                                      LSB

The Golay code word is a 24 bit code word that contains 12 bits of data payload to be sent, represented 
by “X” and 12 bits of parity, represented by “P”.  The parity bits are calculated from the data bits 
using the (24,12,8) extended Golay encoding algorithm as given in the Appendix.  

Golay code word types

The Golay code word types are the 12-bit payload to be sent in the Golay code word.  There are two 
Golay code word types.  

Data code word type

1111 XXXX XXXX
MSB                 LSB

This encodes 8-bit raw binary data XXXX XXXX in order of MSB to LSB.  This message is intended to 
be used for exchanging data for file transfer protocols and other uses left up to the users.   It is not an 
efficient encoding of this data but is included so that the connection may be used for purposes other 
than text exchange.



Text code word type

YYYYYY XXXXXX
MSB                LSB

These encode two 6 bit symbols XXXXXX and YYYYYY.  The symbol XXXXXX precedes that of 
YYYYYY in the data stream, that is, when considered as part of a message, the symbol corresponding 
to XXXXXX precedes YYYYYY.   The symbols encode characters as specified in a table in the Appendix.
The 6-bit code corresponding to 000000 indicates “No symbol” so that no character should be decoded 
in the message for this 6-bit code.  If only one code is to be sent in the code word, then XXXXXX should
be the code, and YYYYYY should be 000000.  A code word with both XXXXXX and YYYYYY being 
000000 is valid and should be considered as two no symbols.

For additional redundancy, the same text code word may be sent multiple times in a row.  If the receiver
decodes the same code multiple times before receiving a different code, it should discard the redundant 
decodes of the code word.  If the same code word needs to be sent multiple times and not have its 
redundant copies discarded, at least one no symbol code (000000 000000) should be sent between the 
code word and its next copy so that the receiver decodes a different code.  Redundant copies should be 
sent in immediate succession, that is, there should be no delay between sending the redundant copies of
the code word.  This enables the copies of the code word to be coherently summed by the receiver.  
Redundantly sent data code words (as opposed to text code words) should not be discarded.  

Synchronization

One of the aspects of a protocol that is most susceptible to corruption is desynchronization of the bit 
stream, that is, incorrectly starting a 30-bit block at the wrong point in the bit stream.  Therefore a 
synchronization protocol is necessary that can synchronize the beginning of a 30-bit block.  Because of 
the complement bits inserted into the 30-bit block, there will be no more than five consecutive mark or 
space (1 or 0) bits in the stream.  This is used for synchronization.  Synchronization is sent either at the 
beginning of the transmission, or can be reinitiated after sending a 30-bit block, with the exception of 
when text code words are sent multiple times without a delay in between for redundancy.  

For OOK synchronization, a synchronization signal is detected by the receiver when 14 or 15 of the last
15 bit intervals decoded is a mark condition (one or key down).  If this happens in the middle of 
receiving a codeword, the codeword being received is aborted and the synchronization phase is 
initiated.  The receiver then waits for following sequence to occur:  3 space bits, 3 mark bits, 3 space 
bits, 3 mark bits, 3 space bits, 3 mark bits.  The edges of the transitions between key on and off are 
used to synchronize the receiver’s clock with the sender.  The sending of the first Golay code word 
occurs immediately after the last 3 mark bits.

For FSK synchronization, a synchronization signal is detected when either of the two FSK frequencies 
are detected by the receiver for 14 or 15 of the last 15 bit intervals decoded.  The FSK frequency 
corresponding to the 14 or 15 bits is considered the mark condition.  If this happens in the middle of 
receiving a codeword, the codeword being received is aborted and the synchronization phase is 
initiated.  The receiver then waits for the following sequence to occur: 3 space bits, 3 mark bits, 3 space
bits, 3 mark bits, 3 space bits, 3 mark bits.  The receiver may identify the space frequency by looking at
both frequencies above and below the mark frequency, or the direction of the mark to space frequency 



shift may be manually specified.  The edge of the transitions between frequencies are used to 
synchronize the receiver’s clock with the sender.  The sending of the first Golay code word occurs 
immediately after the last 3 mark bits.



Appendices

Six-bit symbol encoding

The following is a table of the six bit code.  One or two of these codes form a 12-bit Golay code word 
which can send one or two character symbols.  The six bit code is as follows:

000 001 010 011 100 101 110 111
000xxx No symbol Backspace End of 

Line
  (space) ! (exclam- 

ation mark)
“ (double 
quote)

‘ (single 
quote)

(  left 
parenthesis

001xxx ) right 
parenthesis

* (asterisk) + (plus) , (comma) - (minus) . (period) / (slash) 0

010xxx 1 2 3 4 5 6 7 8

011xxx 9 : (colon) ; (semi 
colon)

= (equal) ? (question 
mark)

@ (at) A B

100xxx C D E F G H I J

101xxx K L M N O P Q R

110xxx S T U V W X Y Z

111xxx \ 
(backslash)

^ (carat) ` (grave) ~ (tilde) INVALID INVALID INVALID INVALID

The codes 111100, 111101, 111110, and 111111 are invalid and are never to be used.

For languages that have diacritics, the single quote, carat, grave, tilde, and backslash may be interpreted
as diacritics, with the diacritic applying to the previously sent character.  The backslash may be 
interpreted as an umlaut.  It is highly recommended to send the character and the diacritic in the same 
Golay codeword so that these are decoded in the same word.  A “No symbol” (000000) can be placed in
the previous codeword to ensure that the next symbol is included with its diacritic.

For other characters representable by 8-bit bytes, for example of the code page 437 of the original IBM 
character set, these may be sent using the a data Golay code, which is

MSB 1111 XXXX XXXX LSB

where XXXX XXXX is the 8-bit code page 437 representation of the symbol.  For example, to send 
lower case a, the 12-bit word 111101100001 or 0xF61 would be sent.  However, no differentiation is 
made between these 8-bit symbols sent as text, and those sent as data, for example, as part of a file 
transfer protocol.



Golay Matrix

The Golay matrix is for the extended (24,12,8) Golay code.   The code is implemented using the perfect
(23,11,7) Golay code with an extra parity bit included.  This can be implemented by multiplying the 12-
bit code word with the Golay matrix to obtain the 12-bit Golay parity check word.  The Golay matrix is
its own inverse, so that applying the matrix to a 12-bit word, and then again to the result, yields the 
original word.  The following code below is an example of the Golay implementation:

const uint16_t golay_matrix[12] =
{
    0b110111000101,
    0b101110001011,
    0b011100010111,
    0b111000101101,
    0b110001011011,
    0b100010110111,
    0b000101101111,
    0b001011011101,
    0b010110111001,
    0b101101110001,
    0b011011100011,
    0b111111111110
};

uint16_t golay_mult(uint16_t wd_enc)
{
   uint16_t enc = 0;
   uint8_t i;
   for (i=12;i>0;)
   {
      i--;
      if (wd_enc & 1) enc ^= golay_matrix[i];
      wd_enc >>= 1;
   }
   return enc;
}

uint8_t golay_hamming_weight(uint16_t n)
{
  uint8_t s = 0;
  while (n != 0)
  {
     s += (n & 0x1);
     n >>= 1;
  }
  return s;
}

uint32_t golay_encode(uint16_t wd_enc)
{
  uint16_t enc = golay_mult(wd_enc);
  return (((uint32_t)enc) << 12) | wd_enc;
}

uint16_t golay_decode(uint32_t codeword)
{



  uint16_t enc = codeword & 0xFFF;
  uint16_t parity = codeword >> 12;
  uint8_t i;
  uint16_t syndrome, parity_syndrome;

  /* if there are three or fewer errors in the parity bits, then
     we hope that there are no errors in the data bits, otherwise
     the error is undetected */
  syndrome = golay_mult(enc) ^ parity;
  if (golay_hamming_weight(syndrome) <= 3)
   return enc;

  /* check to see if the parity bits have no errors */
  parity_syndrome = golay_mult(parity) ^ enc;
  if (golay_hamming_weight(parity_syndrome) <= 3)
     return enc ^ parity_syndrome;

  /* we flip each bit of the data to see if we have two or fewer errors */
  for (i=12;i>0;)
  {
      i--;
      if (golay_hamming_weight(syndrome ^ golay_matrix[i]) <= 2)
        return enc ^ (((uint16_t)0x800) >> i);
  }

  /* we flip each bit of the parity to see if we have two or fewer errors */
  for (i=12;i>0;)
  {
      i--;
      uint16_t par_bit_synd = parity_syndrome ^ golay_matrix[i];
      if (golay_hamming_weight(par_bit_synd) <= 2)
        return enc ^ par_bit_synd;
  }

  return 0xFFFF;   /* uncorrectable error */
}

The encoded word is simply the 12-bit word to be send with the 12-bit parity code prepended to it.  The
Golay code can correct up to 3 bit errors, and so to decode every possible error up to 3 bits, this code 
performs the following:

1.   Check to see if all three error bits are in the sent parity bits by calculating the parity code of the sent
12-bit word and seeing if there are three or fewer difference bits between the sent parity and the 
calculated parity.   If so, the sent 12-bit word is correct.

2.  Check to see if all three errors are in the sent 12-bit word.  Calculate the 12-bit word that would be 
obtained with the given parity code and see if there are three or fewer difference bits between the sent 
word and the calculated word.  If so, the calculated word is correct.

3.  Try flipping every bit in the sent 12-bit word and see if there are 2 or fewer errors between the 
calculated parity and the sent parity.  If so, we know which bit of the 12-bit word is wrong and it is 
corrected.



4.  Try flipping every bit in the sent parity code and see if there are 2 or fewer errors between the 
calculated 12-bit word and the sent word.  If so, we know which bits are wrong in the sent word and it 
is corrected.

5.  Otherwise, the error is uncorrectable or undetectable.
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