AX_

y __J
TECHNOLOGY ®
THE I/O INTERCONNECT SOLUTION

PLX SDK User Manual

Version 6.30

September 2009

PLX SOFTWARE LICENSE AGREEMENT

THIS PLX SOFTWARE IS LICENSED TO YOU
UNDER SPECIFIC TERMS AND CONDITIONS.
CAREFULLY READ THE TERMS AND
CONDITIONS PRIOR TO USING THIS
SOFTWARE. INSTALLING THIS SOFTWARE
PACKAGE OR INITIAL USE OF THIS SOFTWARE
INDICATES YOUR ACCEPTANCE OF THE
TERMS AND CONDITIONS. IF YOU DO NOT
AGREE WITH THEM, YOU SHOULD NOT
INSTALL THE PLX SDK SOFTWARE PACKAGE.

LICENSE Copyright © 2009 PLX Technology, Inc.

This PLX Software License agreement is a legal
agreement between you and PLX Technology, Inc.
for the PLX Software, which is provided on the
enclosed PLX CD-ROM. PLX Technology owns
this PLX Software. The PLX Software is protected
by copyright laws and international copyright
treaties, as well as other intellectual property laws
and treaties, and is licensed, not sold.

PLX Software License Agreement

GENERAL

If you do not agree to the terms and conditions of
this PLX Software License Agreement, do not install
or use the PLX Software. You may terminate your
PLX Software license at any time. PLX Technology
may terminate your PLX Software license if you fall
to comply with the terms and conditions of this
License Agreement. In either event, you must
destroy all your copies of this PLX Software. Any
attempt to sub-license, rent, lease, assign or to
transfer the PLX Software except as expressly
provided by this license, is hereby rendered null
and void.

WARRANTY

PLX Technology, Inc. provides this PLX Software
AS IS, WITHOUT ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION,
AND ANY WARRANTY OF MERCHANTIBILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
PLX makes no guarantee or representations
regarding the use of, or the results based on the
use of the software and documentation in terms of
correctness, or otherwise; and that you rely on the
software, documentation, and results solely at your
own risk. In no event shall PLX be liable for any
loss of use, loss of business, loss of profits,
incidental, special or, consequential damages of
any kind. In no event shall PLX's total liability
exceed the sum paid to PLX for the product
licensed here under.

Table of Contents

PLX SDK USEI IMBNUAL ...ttt e e e et e e e e e e e e e e e e e e ennnnnereeeeeas 1
TADIE OF CONTENTS ...t e e e e e et e e e e e e e e e e e e e e e s s arnr e e e e e e naaaa 1-1
1 General INFOrMATIONcoiiiiiiieit et e e e et e e e ane e e 1-1
1.1 ADOUL thiS IMANUAL. ...ttt ettt et et s e e be e e sm b e e e sbs e e s sr e et e e e snbe e e snneennneas 1-1

1.2 PLX SDK FEAIUIEScuitiiiiiiiiiiiitieei ittt e s s s bbb e e e e e e s arar s 1-1

I T 11~ 1T o o o YRR 1-1

S @1 1S3 (0] 0 1 T=T ST U o] oo o A 1-1

A €1 1 o S = T (=T o 2-1
2.1 DEVEIOPMENT TOOISeeiieiiiiiie ittt e ettt e skt e e s e bt e e e ab bt e e e aab e e e s abe e e e ennbeeeeenene 2-1
2.2 PLX SDK Version ComMPAtiDIlITyeoiiiiiiiiiieii ettt e e e e e e e e s nnneeees 2-1

2.3 Installation & Removal Of the PLX SDKccoiiiiiiiiiiieiiieee ittt 2-1
2.3.1 Installation in a Microsoft Windows ENVIFONMENT...........cooiiiiiiiiiieeiiiiiee e 2-1

2.3.2 Removing Previous Versions of the PLX SDK ... sesvvnnne e e 2-1

2.4 Installation of PLX Device Drivers in WINAOWSccoiiieiiiiiiieeiee et 2-2
2.4.1 PLX Plug and Play Device Driver Installation.............ccccceoiiiiiiiiiieiiee e ee e e e 2-2

2.4.1.1 PLX Device Driver INSTAllAtioncociiiiiiiiiiiiieenec e 2-3

2.4.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDScccccccoeevvvveneeennnn. 2-6

2.4.2 PLX PCI/PCle Service Driver INSTallation.............ooviiiiiiiiiciieie e 2-6

2.4.2.1 Starting and Stopping the PLX SErviCe DIVET..........ccuiiiiiiiiieiiiiiee et 2-6

2.4.3 Modifying PLX Driver Options in the REGISINYcooiiiiiiiiiiee e 2-9

2.4.3.1 PLX Driver OPtioNS WIZAI..........uuiiiiiiieieiiiiiie ittt e e 2-10

2.5 Installation of PLX DeVICe DIVEIS IN LINUXccuvieiiiiiiiieeiiiiie ettt e e e snre e 2-11

2.6 Distribution Of PLX SOMWAIEccoiiiiiiiiiiiiie ettt ettt e s et e e s s e e s s e e e e e 2-11
2.6.1 LIiCENSE AQrEEMIENT. ..ceiiii ittt e e e ettt et e e e e e ettt et e e e e e e e s s s beeeeeeaaesaaasabbbeeeeaaesaaasnbbsbeeeaeeeaaneereees 2-11

2.6.2 WiINAOWS DiStHDULION SEPS.....uuiiiiiiiiiiiiiiiiiiee e e e e s e e e e e e s st re e e e e e s e e sanrareeeeeeeseannneees 2-11

3 PLX HOSE-SIAE SOFtWAIEeeeiiiiiieiiiiie ettt e e e e e e e e e e e e e e 3-1
3.1 SDK Dir€CIONY STTUCIUIEuvveeeieeiiiieiieieeee e e e e s it e e e e e e e s s st e e e eeeesssasbaeeeeeeeeseassteaaneeeeesaaasssreeeeeeessannnnnnnes 3-1

3.2 PLX SDK ArChItECIUIal OVEIVIEWeiiiiiiiieieiitet ettt ettt sttt ettt e e st e e e s enbb e e s anne e e e e e 3-2

TR I = I o I o - o PRSP 3-2

R TN Tt B)= £ PRSP 3-3
3.4.1 PLX DeVvice Driver DIFCIOrY STIUCIUIEcciiiii it ettt e e e e e e e e e e e e e annneeees 3-4

3.4.2 BUilding WINAOWS DEVICE DIIVEIS......cieeiiiiiieie ettt ettt a e et e e e e e e s s aenbeeee e e e e e e e anneeeas 3-4

3.5 USEr-Mode APPHCALIONSeeeiiiiiiiiiiieeii ettt e e e e e e bbb et e e e e e e e s aa bbb e e e e e e e s e e annbbeaeaaeeesannnbnees 3-6
TN N S I QST 001 o] L= AY o] o] 1= o SRR 3-6

3.5.2 Creating Windows PCI HOSt APPlICALIONSccoiiiiiiiiiiiie ettt ee e e et e e e e e e s re e e e e e e s eennnes 3-7

O e I Q1= o 10 Ko TR 1] 4= 4-1

4.1 PLX PEX DeViCe EQItOr (PDE)ccciiitiiiieiiiiie ettt ettt ettt et e et e e s e b e e e enbe e e e eeeee 4-1
e I\ (o] o DO PP PP PP PP PPPPPPPP 4-1
4.2.1 PLXMON ACCESS IMOUESeieiiiiiiiiee ittt ettt ettt ettt e sttt e e st e e e st et e e e st e e e e e abb e e e e sbreeeesanneeene 4-1
o S o @ 1V o T =TSSR 4-1

4.2.1.2 EEPROM File EAIt MOUEoooiiiiiiiieiiiiit ettt et e nnae e e e 4-2

4.2.1.3 SEIAIMOAE.......eeiiiiieiiee ettt sttt ekt e b e et et e s be e e snne e s e e e nnn e e aneeenreean 4-3

4.2.2 PLXMON TOOIDAeeieiitiiiiet ettt ettt ettt ekttt st e et et e ss e e e sbn e e sane e et e e e snbe e e snnesnree e e 4-4
4.2.3 Working With PLXMON DI@lOQgSuuueiiieeiiiiiiiieiie e e e s ittt e e e e e s s sittaeee e e e e e s ssnentne e e e e e e s snnnnnsnneeeaeeeans 4-5
e T =T 153 =T gl 10 =1 o S 4-5

N B | = = (@ 1Y -1 o T SR 4-6

4.2.3.3 MemMOrY ACCESS DIAIOQciueeiieiiiiiie ittt st 4-7

4.2.4 Specifying PLX Chip Type for UNKNOWN DEVICEScoiiiiiiiiiiiiiiiee ittt 4-8
4.2.5 Performance Measure DIal0g.........ccouiuriiiiiiiiiie ettt 4-10
4.2.5.1 Notes before Using the Performance MEASUIEuueiiiiiiiiiiiiiiiiieae e 4-11

4.2.5.2 Performance Measure OPLIONS.uiiii it e ettt et e e e s e e e e e e e e e s e snnbeseeeaaeeeaaaane 4-12

4.2.5.3 DMA PerfOrManCe TESEiuuiieiiiiiie ittt ettt e e e e e aib e e e snbre e e e annnes 4-12

4.2.5.4 Direct Slave PerfOrmanCe TeSt........oiuii it 4-13

4.2.6 The Command-Line INtEIfACE..........ooiiiiiiii it 4-14
4.2.7 Working With Virtual AQArESSES.....cuiei ittt e e e e e e e e e st e e e e e e e s s sntaraereeaeeeaanes 4-14
4.2.8 CommaNnd-Line VAri@blEscooiiiiiiiiii e 4-15

5 PLX SDK API REIEIENCE ..ottt e e e e e e e e 5-1
5.1 PLX AP FUNCLIONS ...ttt ettt ettt sttt 4 skt e e ekt e e e e e st bt e e e mbb e e e s abbe e e e ennbeeeeenene 5-1
L D o AN 0TV €] o o F PP PPRTTT PP 5-3

L o I O 1T ol Y =T 1= PP RTPT PP 5-4
PIXPCI_CRIPTYPESEL ...ttt ettt ettt e e e e s e st b bttt e e e e e e e e e aabbb b e e e e e e e s e annbaneeeeeesnnrnbeees 5-6
PIXPci_CommONBUEIPIOPEITIEScceiiiiiiieiie et e e e e e e e e st e e e e e e e e s nrnneees 5-8
PIXPCi_ComMMONBUEIMAD uuiiiiieie e e s e e e e e e e s st e e e e e e s saannbeeeeaaeessannnnreees 5-10
PIXPci_CommONBUEIUNMADvviiiiiii e e e e st e e e e e s et a e e e e e e e s e nannrees 5-12

[D ot I oY o =T [0 1 - R 5-14

[D ot I oY o =@ o =T o S 5-15
PIXPCI_DEVICEFINGcciiiiiiiie ittt ettt e e st e e s bbbt e e s rabe e e e s anbe e e e s nnnneeas 5-17
PIXPCI_DEVICEFINUEX ...ttt ettt et e e eab bt e e s rabe e e e e anbbe e e snnneeas 5-19
PIXPCI_DBVICERESEL ...ttt ettt e e st e e s bttt e s bbb e e s bb e e e e e n e s 5-21
PIXPCI_DMaChann@IOPEN ...ttt e e e e e st e e e e e e s e e b b e e e e e e e e e e e aneeees 5-22
PIXPci_DmMaChannelClOSe..........cooo oo 5-23

PIXPCI_DMAGEIPIOPEITIES ieeeeiieeiee ettt ettt e e ettt e e e e e e st b e e e e e e e e s e e annbbeaeeaeaeesaabeeeees 5-25

[D oI 0 o RS Y=Y o o] 1= 3 1= 5-27

[D ot I 3 =@ 1 (o R 5-29
PIXPCI_DIMASTALUSeeieiiiiiie ittt ettt sttt e e s st bt e e sabb et e e sabb et e e sbb et e e s aabs e e e s aaneeesnnneeas 5-31
PIXPCI_DMATIANSTEIBIOCKveiiiiiiiiie ettt e e sanneeeas 5-33
PIXPCi_DmMaTransferUSErBUFEIou e e 5-35
[I B 1V =Tq o o] o =Ty (=T TP PRRT P 5-38
PIXPci_DriverScheduleRESCaNccoooeiiiiii i 5-40
PIXPCI_DIIVEIVEISION ... 5-41
[o I =T 0 (0] 4] = (=TT | SRS 5-43
[D oI =T 0 (o] 4] = o] oS 5-45
[D o I =T 0] (] O (ol 1= SR 5-46
[D ot I =T] (0] @8 (o1 oo = L= S 5-48
PIXPci_EepromSetAddreSSWILN..........cueiiiiii e 5-50
PIXPCi_EepromREAIBYOTSEL......coiiiiiiiiiiiiiie ittt 5-52
PIXPCi_EepromWIIEBYORTSELcoiiiiiiieiieie et eee s 5-53
PIXPCi_EepromReadBYOTTSEL_16.......ccciiiiiiiiiiiiiie ittt e e snneeas 5-54
PIXPci_EepromWItEBYOFSEE 16cci ittt e e e e e e e e e e e nneees 5-55
PIXPCI_GEtPOIPIOPEITIES ...ttt ettt e e e e e e st b e e e e e e e e e e e aanbb e e e e eeeeannbebeees 5-56
PIXPCI_GEUZ2CPOITS ... 5-58
[D o I DoAY =T €T o ISR 5-60
[D ot I (o] =0T 1 =T Vo SRR 5-62
[D oI (o =0 4 AoV (SR 5-64
PIXPCI_INterrUPIDISADIE.cci i e e e e e e e e e e e e e a e e e 5-66
[D ot I 1] (= 0] 14 =g = o] R 5-67
[D ot I Y =1 0T D == U S 5-68
PIXPCI_IMAIIDOXWWIILE ...ttt ettt ettt ettt ekt e st et e s sabb e e e e snbe e e e s nnneeas 5-69
PIXPCI_IMH_GEIPTOPEITIES ...ciieiiei ettt ettt ettt e e st e e s e e e anbb e e e ennneeeas 5-70
PIXPCI_IMH_IMIGIrat@P OISceeiieiiieiiitiee ettt ettt e ek e e s nabe e e e s anbn e e e snnreeas 5-72
PIXPci_NotificatioNCanCel ... 5-74
PIXPCi_NOtIfiCAtiONREGISIEIFOoiiiiiiiiiie et e e e e e e e e s ibb e e e e e e e e e abeeeees 5-76
PIXPcCi_NOtIficatioNStatusoooo i 5-78
PIXPCI_NOfICAIONWVAIL ...t iiiiiiei e ettt e e e e e e e e s e e e e e e e s e s anb e e e e e e e e e s s asantrraeeaeessnnnrnrenes 5-80
PIXPCi_PCIBarSPACEREAM.cuuiiiiiei it e e e e e e s s e r e e e e e e nearnreees 5-82
PIXPCI_PCIBarSPACEWIIE ... eeeieieeee ettt e s e et e e e s e e e e e e e e s e s e e e e e e e sasnnntreeeaaeeeaannrnrnnes 5-84
[D ot I o] == T4 1Y = T R 5-86
[D ot I o] == g o o] =T 11T 5-88

PIXPCI_PCIBAIUNMAPDetiiiiiitiiee ettt ettt e sttt e s bbbt e s aabb e e e aabb e e e e sanbee e annneeas 5-89

PIXPCi_PCIREQISIEIREAM ...t e e e e e et e e e e e s e e esnr e e e e e e ennnrnreees 5-91

[D ot I o] LT 1) (= AT (= R 5-93
PIXPCI_PCIREGISIEIREAUFAScoiiiiiiiiiiiiiii et 5-95
PIXPCI_PCIREGISIEIVITEFASTceiiiiiieii ittt e e snnre s 5-96
PIXPci_PciRegisterRead_BYPasSOS..........cooi ittt 5-98
PIXPci_PciRegiSterWrite BYPASSOSttt e et e e e e e e e st raeeeaaaeeeaaan 5-100
PIxPci_PerformanceCalcStatiStiCS...........cooooiiiiiii e, 5-102
PIXPci_PerformanceGetCOUNLEIScccoeiii i 5-104
PIxPci_PerformancelnitialiZEPrOPertie€S........ueuii i e e e e e 5-106
PIXPci_PerformanceMOonitOrCONIIOL............uuiiiiiii e e e e s s e e e e e e s snrereeeeaeeeeaans 5-108
PIXPci_PerformanCeRESEICOUNLELSccuuviiiiiiee e e iciiiiee e e e e e s e et e e e e e e e s s e satbe e e e e e e s s e sanrraeeaeaeeaesaans 5-110
PIXPcCi_PhySiCalMemMOIrYAIIOCALE........ccei it et e e e s e e e e e e e e st eee e e e e e e e e s nnnrneeeeeeeeanes 5-112
PIXPCi_PhYSICAIMEMOIYFTEEvvieeieee e ettt e e e e e s e e e e e e e e e e st e e e e e e s e snnnrnaneenaeeeeannns 5-114
PIXPCI_PhySICAIMEMOIYMEP.......eiiiiiiiiie ittt ettt et e b e e st be e e s sbb e e e eeees 5-116
PIXPCi_PhySiCalMemMOIYUNMAPcoueiiieiiiiiie ettt sttt e st e s snebe e e e eneee 5-118
PIXPCI_PIXREGISIEIREAUcoiiiiiiiieiiiit ettt e s s 5-120
PIXPCI_PIXREGISIEIVVIILE ...ceiiiiiiiiiii ittt ettt e e e e e ettt e e e e e s s abb e e e e e e e e e e e annbaeeeeeaaaane 5-122
PIXPci_PIXMappedRegISIEIREAcoi ittt e e e e e e e e 5-124
PIXPCi_PIXMappedREGISIEINWVIILEoeii ittt e e et e e e e e e e ebnreeeaaaaeeaae 5-126
L D o Y o To | 2 =T T USSR 5-128
L D o Y o To 1YL 4 (= USSR 5-129
5.2 PLX API Data StruCtUreS AN TYPES . uueiiieeiiiiiiiiiieie e e e e e sttt et e e e e e s sittsaeeeaeaeessssatsbaeeeaaeesssnnnseeneeaseennns 5-130
I S =TT = T o I - = U I8 o =SSOSR 5-130
5.2.1.1 Code Portability MACIOS........cc.uuiiiiieee i s s er e e s s er e e e e e e s s e e e e e e e s e nnnnnees 5-130
5.2.2 ENUMETALEA TYPES ..rvveiiieeeiiiiiieieitte e e e s sttt eet e e e s s ssstateeeeeaeessassssaeeeeeeeessaassstaneeeaeeesaasnsenneeeeennns 5-130
PLX _ACCESS TYPE ... 5-131
PLX _API MODE 5-132
PLX_DMA _COMMAND ... 5-133
PLX_DMA _DESCR_MODE......co oo 5-134
PLX_DMA_RING_DELAY _TIME . ..titeeeeeeeeeeeeeseeeeeeeee et et seeeeeeeeteseses et eeeseeesenes s s seesesen s seeeeseeesees 5-135
PLX DMA _DIR .. 5-136
PLX_DMA_MAX_SRC_TSIZE ... iesteeeeeeeeeeeeeeeeee et ee e ee et v e s et et et ee e eee et en s e s seetes s s seseeeeeeees 5-137
PLX _EEPROM ST ATUS L. 5-138
PLX NT _PORT _TYPE ..ottt ettt ettt e et ee et e e e eee e, 5-139
PLX_PERF_CMD ...ttt et et e e e et st eeee e eeeeeeen e e e e ee s, 5-140
PLX P ORT T Y PE ..ttt ettt e e e e et e et e e e e e e s bbb e et e e e e e s nbnbnneeeeaaaane 5-141

PLX ST ATUS et e et e e e e e s e e e et e e e e s s an et e e e e e e s e nnrae e e e e a e e 5-142

PLX_SWITCH_MODE ..ottt ettt e e e s e e e e e e ennes 5-143

5.2.3 DALA SUCTUIES.....ceiiiieiee ittt e et e e e e e e s e e e s s e e e s s e e e s esne e e e s nnnneesnnneees 5-144
PLX DEVICE_KEY .. 5-145
PLX DEVICE _OBJIECT .. i 5-147
PLX DMA _PARAMS ... 5-148
PLX DMA_PROP ...ttt e e 5-149
PLX_DRIVER_PROP ... 5-153
PLX INTERRUP T ..t 5-154
PLX_MULTI_HOST _PROP ...ttt eneees 5-157
PLX_MODE_PRORP ... 5-158
PLX NOTIFY _OBJIECT ...t eeeeae s 5-159
PLX_PCI_BAR_PROP.......oeeeeeee e ettt ee ettt et e e et et ee e e en s, 5-160
PLX _PERF _PROP ...ttt ettt e e e e e s s e e e e e e e e s s bbb e e e e e e e e s e s nnbnneeeenanane 5-161
PLX PERF ST AT S 5-162
PLX _PHYSICAL MEM ... 5-163
PLX PORT _PROP ... 5-164

PLX _VERSION ...ttt et e s e e e e e s s s s e e e e e e s e naae 5-165

1 General Information

1.1 About this Manual

This manual provides information about the functionality of the PLX SDK. The SDK may be used in conjunction
with any PLX Rapid Development Kit (RDK) or any custom design containing a PLX 8000, 9000, or 6000 series
chip. Users should consult this manual for PLX SDK installation and general information about the design
architecture.

1.2

PLX SDK Features

The SDK contains software for Windows & Linux host environments where the PLX chip is accessed across the
PCI/PCle bus. This package is provided for debug phase of hardware development and also for development of
custom applications:

Windows drivers & API with source code

Linux drivers & APl with source code supporting kernel 2.4 & 2.6

PLX Device Editor (PDE) debug utility for all PCI Express devices
PLXMon debug utility is to support all PLX 6000 & 9000 series devices.

Sample applications

1.3 Terminology

References to Visual C/C++ or Visual C++ refer to Microsoft Visual C/C++ 6.0.

Win32 references are used throughout this manual to mean any application that is compatible with the
Windows environment.

References to PCI Express may be denoted as either PCle or PEX.
References to Non-Transparency may be denoted as NT.

References to Application Programming Interface may be denoted as API.

1.4 Customer Support

Prior to contacting PLX customer support, please be prepared to provide the following information:

PLX chip used

PLX SDK version

Host Operating System and version
Model number of the PLX RDK (if any)
Description of your intended design
Detailed description of your problem

Steps to recreate the problem.

1-1

If you have comments, corrections, or suggestions, you may contact PLX Customer Support at:

Address: PLX Technology, Inc.
Attn. Technical Support
870 W Maude Avenue
Sunnyvale, CA 94085

Phone: 408-774-9060
Fax: 408-774-2169
Web: http://www.plxtech.com/support

1-2

http://www.plxtech.com/support

2 Getting Started

2.1 Development Tools

Various tools were used to build the software included in the PLX SDK. There are many compatible alternative
tools available for the various build environments. Customers are free to use their own preferred sets of
compatible development tools; however, PLX has only verified the tools listed below and, as a result, cannot
support tools not listed here. The development tools used to develop the PLX SDK components include:

Windows Applications and API DLL:
Microsoft Visual C/C++ 6.0, Service Pack 6

Windows Driver Model (WDM) Device Drivers
Microsoft Windows Device Driver Kit (DDK) or Windows Driver Kit (WDK). 2003 Server DDK or higher is
required to build 64-bit versions of PLX drivers.

Linux Applications and API Library:
Standard Linux distribution, such as RedHat or Fedora, using GCC.

Linux Device Driver:

Standard Linux distribution, such as RedHat or Fedora with kernel source/development RPM installed
2.2 PLX SDK Version Compatibility
When using the PLX SDK, it is important that all components are of the same version, as follows:

e In Windows & Linux, the PLX device drivers (e.g. .sys files) and the PLX API library (e.g. PIxApi.dll)
versions must match. In other words, loading a driver built with SDK 5.0 and running an application,
which calls the API library from version 4.40, will result in erratic behavior.

e When building applications, it is important to use the C header files included in the installed PLX SDK
version. Applications built with older SDK versions must be re-built. In some case, there may be a
porting effort when upgrading to a newer SDK due to API changes.

2.3 Installation & Removal of the PLX SDK

2.3.1 Installation in a Microsoft Windows Environment

Before installing the SDK, any previously installed PLX SDK versions should be removed. Installation of
multiple SDK versions may result in erratic behavior due to file conflicts. Refer to section 2.3.2 for more details.

To install the PLX SDK Software package, simply run the SDK installation package and follow the prompts.
Note: For proper Windows installation, a user with “Administrator” rights must install the SDK in order to install
drivers.

2.3.2 Removing Previous Versions of the PLX SDK

Prior to installation of a new version of the PLX SDK, any previously installed versions should be uninstalled.
Many files change between SDK releases and since these files are used for development purposes, they may
be incompatible with a previous release. To remove a PLX SDK package, including device drivers, complete
the following:

1. Close any open applications

Open the Windows Control Panel

Select Add/Remove Programs icon in the Control Panel window
Choose the PLX SDK package from the item list

Click the Add/Remove... button

o w DN

2-1

Note: For proper removal, a user with “Administrator” rights must remove the PLX SDK.

Warning: If any files have been modified in the original PLX SDK install directory, such as C source code files,
the uninstaller may delete them. Please be careful before uninstalling an SDK package. The SDK directory can
first be copied (not moved) to another safe location before removal.

2.4 Installation of PLX Device Drivers in Windows

During SDK installation, the installation package will automatically create the necessary registry entries and
copy any files needed to load PLX device drivers.

241 PLXPlug and Play Device Driver Installation

The PLX Windows device drivers conform to the Microsoft Windows Driver Model (WDM). These drivers
support Plug 'n’ Play (PnP) and Power Management.

Since Windows is a Plug 'n’ Play (PnP) Operating Systems, the SDK installation package does not automatically
assign device drivers for PLX devices. The Windows PnP Manager is responsible for detecting devices and
prompting the user for the correct driver. To assign a driver for a device, Windows refers to an INF file. The INF
file provides instructions for Windows as to which driver files to install and which registry entries to insert.

To install a driver for a board containing a PLX device in PnP Windows, complete the following steps:
1. After installing the PLX SDK successfully, shut down the computer.
2. Insert the PLX RDK board or your custom board with a PLX device into a free PCI or PCle slot.

3. Reboot the computer. Windows should first detect the new hardware device with a “New Hardware
Found” message box. Acknowledge this message box.

4. Windows then displays the “Found New Hardware” Wizard, which will search for a suitable driver.

2-2

2.4.1.1 PLX Device Driver Installation

Once the Found New Hardware Wizard starts, the following dialog is displayed: Select No, not this time.

Found Hew Hardware Wizard

Waelcome to the Found New
Hardware Wizard

Windows will search for current and updated software by
laaking an waur compter, on the hardware inztallation CO, ar an
the YWwindowes | pdate Wweb site [with wour permizsion).

R ead our privacy policy

Can " indows connect to YWwindows pdate to search for
zoftware?

1 s, this time only
) Y'es. now and every time | connect a device
%) Mo, nat this time

Click Mest to continue.

Mewt = l[Cancel

2-3

e The Wizard will now attempt to find the .INF file. By default, PLX includes the PLX INF file in
<Sdk_Install_Dir>\Windows\Drivers, but it also places a copy in the Windows INF folder. The wizard should
be able to automatically locate the correct INF file. Select Install the software automatically option.

Found Hew Hardware Wizard

Thiz wizard helpz you install software faor:

PLx 8532 PCl Express Switch [Mon-transparent]

{ \J If your hardware came with an installation CD

e

== or Hoppy disk, inzert it now.

What do you want the wizard b da?

(%) Install the software automatically [Fecommended)
) Install Fram a list or specific location [Advanced)

Click Mest to continue,

< Back ” M et = l[Cancel

o Windows will then scan through INF files to find a matching device driver. Since PLX drivers are not digitally
signed, Windows will prompt with the following dialog. Click Continue Anyway.

Har dware Installation

' E The zoftware vou are installing for this hardware:
[]
PL+ 8532 PCI Express Switch [Mon-transparent]

has not paszed Windows Logao kesting ta werify ite compatibility
with "Windows =P, [Tel me why this testing is imporkank. |

Continuing your installation of thiz zoftware may impair
or destabilize the comect operation of your spstem
either immediately or in the future. Microzoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
pazsed Windows Logo testing.

;"'ii.é.'r{t'iﬁiié'ﬁ@':‘jé'ﬂ [STOP Installation

2-4

¢ When the following dialog is displayed, the device driver installation is complete. Click the Finish button.

Found Mew Hardware Wizand

Completing the Found New
Hardware Wizard

The wizard has finished instaling the zoftware for;

@ PLx 8232 PCl Exprezs Switch [Mon-transparent)

Click. Finizh to close the wizard.

e If the device appears under Other devices, the installation was successful. Applications that use the PLX
API, such as PLXMon or the PDE, may now be used to access the device.

File Action Wew Help

g =
.
¢ Computer
g Disk drives

-j Display adapkers
i DWDICD-ROM drives
=) Floppy disk contrallers
M4 Floppy disk drives
=% IDE ATAJATAPT controllers
e Kevboards
'y Mice and other pointing devices
% Monitars
B8 Metwork adapters
@ Ckher devices
@ Cuskarn (DEM) PCT 9054 Board
2 Ports (COM & LPT)
% Processors
@, =ound, video and game contrallers

System devices
Universal Serial Bus controllers

O O O Oy O O O O s O Y
t

[e e O B

Note: If the Device/Vendor ID of the board is changed or the board is physically moved to a different PCI slot,
Windows will recognize it as a completely new device and the process must be repeated.

2.4.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs

When a new device is plugged into a system running Windows, the Windows Plug ‘n’ Play Manager will prompt
the user for driver files. Windows determines which files to install through information in an INF file. PLX
already provides an INF file (PIxSdk.inf), which contains setup information for all PLX RDKs and all PLX parts
with a default ID. The INF may be found in <Sdk_Dir>\Windows\Driver, but the install package also installs a
copy under <Windows_Dir>\Inf.

The recommended method for installing a device where the ID has been changed is to open the PLX INF file
and add an entry for the device with a custom ID. The procedure for this is documented inside the INF file itself,
which is a simple text file. Open the INF in a text editor, such as Notepad, and follow the instructions to add an
entry for the custom ID and then re-install the device. Windows will then automatically detect the device and
install the necessary driver files.

2.4.2 PLXPCI/PCle Service Driver Installation

The PLX Service driver (PIxSvc) is installed automatically by the SDK installation package but may also be
installed manually. To perform a manual installation, follow the steps below:

e Add therequired driver registry entries
Double-click the PLX Service registry file (<Sdk_Install_Dir>\Windows\PIxSvc.reg) to install the required
registry entries. Double-clicking the file will automatically launch RegEdit and add the necessary entries.

e Copy the PLX Service driver to Windows
Copy the file PIxSvc.sys to <Win_Dir>\System32\Drivers. PIxSvc.sys may be found in
<Sdk_Install_Dir>\Windows\Driver\Source.PIxSvc.

e Copy the PLX API library to Windows
Copy the PLX API DLL (e.g. PIxApi50.dll) to the Windows <Win_Dir>\System32 folder. This file is
located in <Sdk_Install_Dir>\Windows\PIxApi.

e Restart the system

2.4.2.1 Starting and Stopping the PLX Service Driver

Since the PLX PCI Service runs as a background task, it may be stopped and started dynamically. The steps
below demonstrate how to control the service. Additionally, the PLX Driver Options Wizard may be used to
start and stop the driver.

2-6

e Open the Device Manager (My Computer Properties, Hardware tab) and display the hidden devices as
shown below.

L Device Manager

File Action | | Help

® Devices by bype l
Devices by conneckion

= TN

= . C Resources by bype
i;_ D;:lsrlz Resources by connection
@ W] Show hidden devices

2 DVD _

@ Flap Cuskomize. ..

ﬂ, Floppy disk drives

g Human Interface Devices

=4 IDE ATASATAPT controllers

‘Zp Kevyboards

'_'_} Mice and other pointing devices
E‘. Modems

@ Manitors

HE nletwork, adapters

o Ports (COM & LPT)

ﬂ Processars

@, sound, video and game controllers

i System devices
niversal Serial Bus controllers

IDispIa':.fs legacy devices and device

1-H-FH-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E

e Under Non-Plug and Play Drivers, find the PLX PCI Service Driver entry and double-click it.

Jﬂctinn Yig |J1--P| ||@|J

[+ E@ Network adapters]
B \} Man-Plug and Play Drivers

-+ BFD Netwarking Suppart Environment

- awlegacy
\> Eeep
- Diskperf
-y dmbaat
i drload
\> Fips

..... } Fs_Rec

- Genetic Packst Classifier
o GEFTILWE

- IPSEC driver

- KSecDD

- minmdd

-+ ROUREMIY
-+ MDIS System Driver

- NDPraxy
-+ MetBios aver Tepip
- MetDetect

\> rull
e pEFEME
i Parvdm

----- } parywhere Install Service
SR PCI Service Drive

- Remate Access Auto
- Remate Access IP AR

\> TCR{IP Protocol Drive Sean For hardware changes

..... " vaa
R R TI | - . .

Disable
Urinstall. ..

e The following dialog will appear. The Start and Stop buttons control loading and unloading of the driver,

PLX PCI Service Driver Properties ﬂ E |

respectfully.

General Driver I

.\> FPL= PCl Service Diriver

Service name; PlsPei

Dizplay name: FLx PCl Service Driver

— Current status

Status: Started Start |

— Startup

Type: Automatic

Dirivver Details. .

ok

Cancel

2.4.3 Modifying PLX Driver Options in the Registry

All Windows drivers have entries in the Registry, which are required by the OS. Additionally, there may be

driver-specific entries, which can be used to customize driver behavior.

Some features of PLX drivers are

customizable through registry settings and are documented below. The registry entry is located in the path

specified below. Figure 2-1 demonstrates a typical entry.

HKLM\System\CurrentControlSet\Services\<DriverName>

2-9

% Registry Editor
File Edit Wiew Favorites Help

(3 Pixa311 Al Mame Type ——
1 Pix3030 [ab] (Defavit) REG_SZ (value ot set)

I:l F"|}(I:IEI:I Cl:umml:lnEiuf'FerSiZE REG_DWORD Q00010000 (55538)
g Errl:erI:lntrl:ll REG_DWORD Q00000000 ()

(] Plxa656 ImagEF‘ath REG_EXPAMND_S7 System32'\Drivers \Plx3054.5ys
|"_‘-| PlicSve Start REG_DWORD Q00000003 (3)

(27 PrPservice & Type REG_DWORD 000000001 (1)

#1771 Palicvanent M
£ pJ £ pJ

My Computer\HKEY _LOCAL_MACHIMNE\SYSTEMYCurrentControlSet\Services\Plx9054

Figure 2-1 PLX Device Driver Registry Information

The registry entries are described in detail below. Note: Only advanced users with administrative rights should
modify entries in the registry. Please refer to Microsoft's documentation on modifying the registry.

Windows required entries:

e ErrorControl
Required by the operating system and should not be modified.

o Start
Required by the operating system and should not be modified.

e Type
Required by the operating system and should not be modified.

PLX-specific entries:

o CommonBufferSize
This value sets the size of the Common buffer, which the driver attempts to allocate for use by all
applications. This buffer is a non-paged contiguous buffer, so it can be used for DMA transfers. The
default value is set to 64KB. Users may increase this value if a larger buffer size is needed.

Note: Changing this entry does NOT guarantee allocation of a larger buffer. The device driver
makes a request to the operating system for a buffer with the size indicated by this registry entry. If
the request fails, however, usually due to unavailable system resources, the driver will decrement the
size and resubmit the request until the buffer allocation succeeds. The APl call
PIxPciCommonBufferProperties() can be used to determine the common buffer information.

2.4.3.1 PLX Driver Options Wizard

The PLX SDK includes the PLX Driver Options Wizard application to manage all PLX driver settings. Using the
wizard avoids the need to manually modify the registry. The wizard may be used in all supported versions of
Windows. Details about each configuration option are displayed at the bottom whenever the item is selected.

After launching the wizard, select the desired driver and modify the options as needed. The updated settings will
take effect when the driver is reloaded, either manually or after a system reboot.

2-10

¢ PLX Driver Option Wizard

Select a PL driver. | 8000-zeries NT PrP driver
BO00-zenes MT PnP driver
A050/9052 PrP driver
9030 PrP driver

030 PrP driver

9054 PP driver

9056 PrF driver
9656 PrF driver E xit
2311 PrP diiver

FL¥ PCI/PCle service

MiE

Drriver Options

Common Buffer Size [hex]
10000 ~v| E4Kb r

Additianal Infarmation

b odify the PLx 9054 device driver settings using the controls above. The updated driver
zettings will take effect when the PL= driver iz reloaded after a reboat ar manually unloaded
& reloaded.

Registy Kew: HELMWSystemCurrentControlS ethServicezhPlz3054

Figure 2-2 PLX Driver Options Wizard

2.5 Installation of PLX Device Drivers in Linux

The PLX SDK contains support for Linux environments. Documentation for the Linux support is not included this
manual; however, much of the Windows host-side architecture applies to the Linux Host-side support as-well.
Please refer to the PLX Linux Release Notes in the <Sdk_Install_Dir>\Documentation folder for using the PLX
SDK in Linux. The PLX Linux TAR package is located in <Sdk_Install_Dir>\Linux_Host.

2.6 Distribution of PLX Software

2.6.1 License Agreement

For OEM customers, who have written applications with PLX software and intend to ship it with their product,
please refer to the PLX Software Distribution License Agreement in the PLX SDK Release Notes. The License
Agreement is not reprinted in this manual. The agreement specifies which SDK components you may
redistribute to end users.

2.6.2 Windows Distribution Steps

2-11

3 PLX Host-side Software

This section describes the PCI Host software components provided in the PCI SDK, which applies to Windows
and Linux.

3.1

SDK Directory Structure

Figure 3-2 shows the PLX SDK directory and top level sub-folders.

Figure 3-1. PLX SDK Directory Organization

Bin
Contains binary executables.

Documentation

Contains the User’'s Manual, readme files and other SDK documentation.

EEPROM Images

Contains sample binary EEPROM files for all PLX devices and RDKs

I Pleadk
) Bin
) Documentation
=l |Z) Eeprom_Images
I3 Plx_s000
I3 Ple_s000
+ (=) Plx_2000
I Include
|2 Lin_Hosk
=) wWindows
=l) Driver
+ () Source,Plka0on
4) Source. Plx3000
) Source. Plx2000
|2} Source PlxDma
() Source,PlxSve
+) Pleapi
=l |) Samples
+ () ApiTest
) DSlave
+ |} DSlave_Bvpassapi
4 |[) DualCast
) HokPlugDemo
4 () LocalToPoilnk
4 () MT_Sample
+ () PerfManitar
[PlxiCm
[} PlxDma
) PlxDmasgltodpi
) PlxEep
+ () PleMoatification
H) SampledppiEll
|Z) shared

3-1

e Include
Contains all the common include files used by the drivers and applications in the SDK.

e Linux_Host
Contains the PLX Linux support package

e Windows\Driver
PLX Windows drivers source code

e Windows\PIXApi
Contains the PLX API source code

e Windows\Samples
Contains sample applications that demonstrate use of the PLX API
3.2 PLX SDK Architectural Overview

The PLX SDK has three main components, the Kernel drivers, User API and User Applications. Figure 3-2
demonstrates the various components and how they fit together. The SDK is provided to handle most of the
low-level functionality so users can concentrate on building their applications.

PEX User Application
(eg. Pex Device Editor GUI)

PEX API Library

User Space

Service Driver NT Mode Driver Kernel Space

\%(
[T e

PEX Device — 1 PEX Device—2 PEX Device—n

(8532) (8114) 850¢ 0r 81xx

Figure 3-2 PLX SDK Software Architecture

3.3 PLXAPI Library

The PLX API library is provided to communicate with the PLX device drivers. When an API function is called by
an application, the API library handles the call and translates it to an I/O control message and sends it to the
driver. Once the driver completes the request, control returns to the APl and then back to the calling application.

3-2

The PLX API consists of a library of functions, from which multiple PLX chip-based PCI boards can be accessed
and used. The API covers all features of all PLX chips, such as DMA access, direct data transfers, and interrupt
handling.

The PLX API libraries in the Windows environment file are implemented as Dynamically Linked Libraries (DLL).
Applications linked with these libraries will attempt to load the DLL when started; therefore, the DLLS must be
found somewhere in the system path. DLLs are typically placed in the Windows system directory.

The PLX API library in the Linux environment file is implemented as a statically linked library, rather than
dynamically loaded. Applications will link with the API library during the build process and will, therefore, contain
API library code in the executable.

3.4 Device Drivers

The PLX SDK contains two types of Windows device drivers. The first type is a Windows service driver. The
service driver is used to access any PCI device in the system and also supports EEPROM access to PLX
devices running in Transparent Mode. The other category of device driver is a standard Plug ‘n’ Play device
driver. This driver is typically used for PLX devices running in Non-Transparent mode and also for all PLX 9000
devices.

A device driver is necessary for the PLX SDK software to access PLX PCI devices. Applications, such as
PLXMon, cannot access PCIl devices without a device driver installed. The SDK includes drivers for all
supported PLX PCI chips.

The PLX device drivers contain the API implementation for the PLX chip they support and the basic functionality
required by all device drivers for the OS environment. The device driver accesses the PLX chip across the PCI
bus by using OS system calls. The driver is also responsible for handling PCI interrupts from the PLX chip.

Each PLX chip type has an associated driver. Device drivers are not associated with a specific board, but are
generic in design to be used for any board containing the specified PLX chip. A single driver is responsible for
all devices in the system containing the PLX chip the driver was written for. Each device driver communicates
with the PLX API on a one-to-one basis; there is no driver-to-driver communication.

3-3

3.4.1 PLX Device Driver Directory Structure

The PLX drivers are designed to take advantage of common code; therefore many files are shared between all
PLX drivers. The following figure depicts the Windows device driver directory structure as found in the PLX
SDK installation.

=l | Plxadk
1 Bin
1 Documentation
+ |1 Eeprom_Images
1 Include
1 Linux_Host
= I Windows
=l) Driver
+) Source.Plxaoon
+) Source,Pla000
= [} Source . PL2000
= I Chip
0 8311
=) 9030
=) 9050
) 9054
=) 9058
) 9080
) 9656
+ [Source. PlcSwe
+ [Pleapi
+) Plxlegacyapi
+ () Samples

Figure 3-3 PLX Driver Directory Structure

The driver directories are described below:

e Driver\Source.PIx6000
Contains source code for the PLX 6000 Non-transparent mode driver.

e Driver\Source.PIx8000

Contains source code for the PLX 8000 Non-transparent mode driver.
e Driver\Source.PIx9000

Contains source code common to all PLX 9000 drivers.
e Driver\Source.PIx9000\Chip\<ChipType>

Contains PLX chip-specific source code used for PLX 9000 drivers.

e Driver\Source.PIxSvc
Contains source code for PLX Service driver.

3.4.2 Building Windows Device Drivers

To build a driver, the Windows DDK or WDK must first be installed. Follow the steps below to build the driver.
The DDK environment determines the version of the driver built; otherwise, the build process is identical for all
environments.

Note: Due to limitations in the build utility provided in the Windows DDK, the PLX-supplied batch file,
BuildDriver.bat, must be used to build a driver. The build utility does not easily support compiling of files in a
common directory; therefore, it is not used directly to build PLX drivers.

3-4

e Select and open the desired DDK environment (icons are installed by the DDK).

| @) windows 2000 oK y
5] Windows DDK 2600,1106 »

i Euild Environments [Windows Server 2003 B 'windows Server 2003 Checked IA-64 Bit Build Environment
.lj Windows MT DDK P .lj Help r .lj Windowes =P ¥ B Wwindows Server 2003 Checked x64 Build Environment
.lj Taools k e Windows Server 2003 Checked %586 Build Environment:
Bl windows Server 2003 Free IA-54 Bit Build Environment
Bl windows Server 2003 Free x64 Build Environment
Bl windows Server 2003 Free x&6 Build Environment

e Move to the PLX SDK driver directory. Use the BuildDriver script to build the drivers. BuildDriver.bat
will automatically perform the necessary steps to build the desired device driver. Some sample build
screenshots are provided below. Once the driver is built, the new driver file may be used in Windows.
Refer to the Windows DDK for additional information on building and debugging drivers.

®& Win 2003 DDK - x86 Checked Build Environment
Win 20083 DDK — x86 Checked Build Environment

F:~Ddk~MinDDE~3798™1 183> c:
C:iwy GD SP1xsPlxSdksMindows“Driver
C:xPlasPlxSdk~WindowssDriver? BuildDriver.hat

PLA Yindows driver build batch file
Copyright <c>» 2886, PLX Technology,. Inc.

Usage: huilddriver {PLE_Chip* [CleanOptionl

PLE_Chip = (BBA PLY 6254/6548./6466 HT-mode PnP driver

i15]515) PLY 8888 HT-mode PnP driver

2858 PLY 98589852 PnP driver

@38 PL& 9838 PnFP driver

888 PL& 9888 PnP driver

7854 PLE 9854 PnP driver

9856 PLY 9856 PnP driver

2656 PLY 9656 PnP driver

8311 PLY 8311 PnP driver

Svc PLX PCI-PCIe Service driver

Build the driver
Remove intermediate build files
Remove all build files

CleanOption = <{nonex
‘clean’
‘cleanall’

C:xPlxawPlxSdk~WindowssDriver? BuildDriver 7854

3-5

% Win 2003 DDK - x86 Checked Build Environment

= MOTE: Building of PLX drivers has heen tested with the Windows
* 2088 DDK and Windows DDK v26B@A.1186 and v37??8.18368. 32-bit
* and 64-hit <AMD64 only> environments. IA64 is not supported.

T¥P: WDH Driver
CPU: i386
CFG: chk
PLE: 9854

Copying chip—specific files...

BUILD: Uszing 2 child processes
BUILD: Object root set to: ==2 ohj_Plx?854_chk_wnet_x86
BUILD: Compile and Link for i386
BUILD: Examining c:isplxsplxsdkswindowssdriverssource.plx?888 directory for files
to compile.
BUILD: Compiling <MoSync» coswplxsplxsdkswindowssdriverssource ..plx9888 directory
Compiling — driverversion.rc for 1386
apifunctions.c for i386
dispatch.c for i3B6
driver.c for il8e
eep_7888.c for i3Bo6
glohalvars.c for i386
pcisupport.c for i386
plugplay.c for i3B6
power.c for 1386
supportfunc.c for i386
generating code... for i3H6
plxchipfn.c for i3B6
plxchipapi.c for i386
plxinterrupt.c for i386
— generating code... for i386

BUILD: Compiling c:splxsplxsdikswindowvssdriverssource.plx?8880 directory
BUILD: Linking c:splxsplxsdkswindowssdriverssource.plx?880 directory
%a?E%nQDExecutahle - driver_plx?854~chk~1386%plx?854 _sys for 1386

: Done

1% files compiled
1 executahle built

C:wPlasPlxSdk~WindowssDriver?

3.5 User-mode Applications

User-mode applications use the PLX API library to control any device with a PLX chip. For most situations, a
user-mode application using the PLX API is sufficient to perform the desired functionality. PLX drivers are
generic in design to minimize the need for driver customization. Typically, drivers are modified to take
advantage of specific OEM hardware on a device, or possibly to add functionality, such as additional processing
in the Interrupt Service Routine.

This section will explain some techniques for building user-mode applications and use of the API. The following
text refers to Microsoft Visual C/C++ 6.0, but customers are free to use any compatible developer tool of
preference.

3.5.1 PLX Sample Applications

Several sample applications, located in <Sdk_Install_Dir>\Windows\Samples, are included in the PLX SDK.
These demonstrate how an application can use the PLX API to perform various functions with PLX devices.
The included project files are for Microsoft Visual C/C++ 6.0.

3-6

3.5.2 Creating Windows PCI Host Applications

The first step in creating a Windows PCI Host application is to create a Microsoft Project File. A new project file
can be created or one of the sample projects can be opened and modified. Typically, a Win32 Console

application is used to create a project, but any C or C++ project, such as MFC AppWizard, is compatible with
the PLX API. Figure 3-4 demonstrates the new project dialog.

vew 21|
Filez Projects | Workzpaces | Other Docurnents |
L& ATL COM Appiwizard Project name:
t] Cluster Rezource T ppe Wizard IMP-‘E'-F'FJ
g| Cuztamn Appiwfizard)
= Database Froject Lagatior:
B DS tudia Addin Wizard |F:\&pplications\Mydpp o
r | S4P Estension Wizard
= | M akefile
'T', MFC Activer Controfafizard o) Create new workspace
@ tFC Appafizard [di) € fdd o curent workspace
B MFC Appiadizard [exe] ™ Dependency of:
W4 Utility Project
& |32 Application I [
j"w"inSE Conzole Application
%] Wwin32 Dynamiz-Link Library
%] wind2 Static Library Blatforms.
|W|n32
k. I Cancel

Figure 3-4 Visual C/C++ New Project Dialog

Once the project has been opened, source code can be written and inserted into the project. Before an

application can be built successfully, however, the steps below must be completed. Figure 3-6 demonstrates a
typical Visual C project that is configured for the PLX API.

3-7

e Add the PLX SDK Include directory
This ensures that the development tools refer to and can find the correct version of the PLX C
header files. In Visual C/C++, for example, the directory is specified in the Options dialog, as shown
in Figure 3-5.

Editor | Tabs | Debug | Compatibility | Buld | Directones | EE

Flatfarm: Show directaries for:
|'win3z | |Includs files |
Directonies: i b S

C:\Program Filez\Microzoft WVisual Studic'WCIBWNCLUDE
L \Program FileshMicrozoft Visual StudioWCISNFCAWMCLUDE

D:%Program Files\Microzoft Visual Stodin'WCIENWATLWMCLUDE
IE:HF’IHHF‘IHSdkHIncIudE ... I

ak. | Cancel

Figure 3-5 Visual C/C++ Include Files Directory

e Include “PIxApi.h”
This file must be included to provide prototypes for PLX functions and any PLX-specific data types.

e Insert “PIxApi.lib” into the Project
This library file contains link information for the PIxApiXXX.dll file, where <XXX> is the SDK version
number, e.g. PIxApi520.dll. When the application is launched, the API DLL will automatically be
loaded by Windows. The library file is provided in the <Sdk_Install_Dir>\Winows\PIxApi\Release
directory.

o SampledippGUI - Microsoft Yisual C++ - [SampleAppGUIDIs.cpp]

[# Eile Edit View Insert Project Build

SRE==g=

Tools Window Help

o BT G |BarMapHef

==}

=

(]

|5ampleappBUlL | [win32 Debug

2lx
Wiorkzpace "SampledppGLUIY 1 projec
--[E8 SampleAppGUI files
=49 Source Files
¥] SampletppGUl.cpp
SampledppGUlLc
SamplaﬁppGUIDlg.cpﬂ
Stdafs cpp
+)--[7] Header Files
+--[Z7 Resource Files
Plespisil i

|

| *
B E Class... J e Hesnu...‘ |E] FileView

Ready

L«
@

L

Description: =

Sample GUI application to demon=trate how to uze the 6350 de=i
Reviszion History:

01-01-07 PLX SDK «5.00

*
*
*
*
*
*
*
*

"stdafxz h"
"SanpleippGUI h"
"SanpleippEUIDlg . h"
"PlzApi . h"

Finclude
tinclude
#include
Finclude

tifdef _DEBUG
fdefin=e new DEBUG HEW
#undef THIS FILE

=tatic char THIS FILE[] = _ FILE :
#endif
-
* Globals
o
CSanpleAppGUIDlg =GhEl_pMainDlg = HULL:
BEGIN_MESSAGE MAP({CSampleippGUIDlg, CDialog)
SoLLAFE MSG MAP(CSanpleAppGUIDLlg)
OH_BN_CLICEED{IDOEK, OnButtonSelect)
SV RAFHMSG MAP
END_MESSAGE MAFP()
-
*
* Function -
4 »
Ln 22, Cal 1

Figure 3-6 Typical Visual C/C++ Project

3-9

4 PLX Debug Utilities

4.1 PLX PEX Device Editor (PDE)

The PLX SDK includes the PEX Device Editor for working with PLX PCI Express devices. Help for the
PDE utility is included within the utility itself. Please open the PDE and select the help option from the
menu.

4.2 PLXMon

The PLXMon debug utility is a powerful tool, which provides easy-to-use GUI screens for read/write of
PLX chip registers, access to local bus devices, download of local software to RAM, programming of
FLASH devices, and EEPROM access.

4.2.1 PLXMon Access Modes

PLXMon accesses the PLX chip in one of two ways: through the PCI bus or, if BEM compatible code is
running on the local-side, through a serial cable connection. Figure 4-1 shows the PLX communication
modes.

PLXMon ¢ - ------ 1

PLX Host API

PLX Driver

Communication

Serial

Communication PLX PCI

Chip

r
|
|
|
|
|
|
|
|
|
|
| PCI Bus
|
|
|
|
|
|
|
|
|
|
|

Figure 4-1 PLXMon Communications Modes

421.1 PCl Mode

In PCI mode, all accesses to the PLX chip are performed directly through the PCI bus, via the SDK API
and PLX device driver. If a PLX driver is not installed/loaded, PCI mode will be unavailable. In PCI mode,

the upper pane in PLXMon is disabled. The lower pane is an interpreter that accepts commands to
access registers and memory.

(=03
File Command FRegisters Help

‘l@l,@l?ﬁlﬁ ’?il Establish Serial Connection |

G B Mo #

E] >
*help

Help 1= awvailable for the followving commands: hil

dl dw dh =1 =Y =h
7 T 1l i 1h vars
ol o oh TET TeEg Dol

clear guit

For more information, type 'HELP <command:' .

¥

AW B

Using direct access through PCI \Bctive Pane: Lower \Current Made: PCI

v

N

Figure 4-2: PLXMon in PCI Mode

4.2.1.2 EEPROM File Edit Mode

If a PLX device is not detected in the system, PLXMon displays a dialog (Figure 4-3), which provides two
options: Enter EEPROM File Edit mode or attempt a connection to enter Serial mode.

The EEPROM edit mode is provided for those who need to create or modify EEPROM files, which will be
used with an 1/0O programmer. In this mode, since no PLX devices are physically present in the system,
PLXMon cannot program the EEPROM device directly.

4-2

Select an Option |

% EEPROM Fils Edit
Select chip tupe :

9056 = | EditWalues

i

" Establizh Serial Connection with Device
COk Piark: cam1 =
Baud/Fate: [38400 i
Diata Bits: 8

4

Earity: MHone
Stop Eita: 1

4

JAdJL

Elaw Cortrall | Mone

LEonmect

|

Figure 4-3: EEPROM Edit Mode

4.2.1.3 Serial Mode

In Serial Mode, PLXMon establishes a serial connection with a device. In this mode, the software
executing on the local CPU (PLX BEM) accepts and carries out commands from PLXMon to perform
necessary tasks. While connected, the upper pane of PLXMon provides a terminal interfaces, similar to
other serial terminal applications, such as HyperTerminal. The lower pane is an interpreter that accepts
commands to access registers and memory. It is important to note that in Serial mode, the local CPU
handles commands entered in the lower pane, so memory and registers are accessed from the local
CPU'’s point of view. In Serial mode, the command ‘dl 100000’ will read from the local address location
1MB. Conversely, in PClI mode, only virtual addresses are allowed, so the same command will most
likely result in an invalid address.

4-3

File Command Registers Help

|@| |%|ﬁ| || Disconnect from Device |

G "M G #

FFFFFFFPEFEEF LILLIL
FFFFFFFFFFFFEF LIILIL
FFEFEF FFFFFF 1ILLLLL
FFEPFE FFFFFFEF LLLLLL
FPFFFFFFFFFFFFFE LLILLL
FFFFFFFFFEFFEF LILILL
FFFFFE IIIIIT
FFFEFF LILITIILILITLLLL
FFEEFFE LILLLLILILLILILL

PLY Command-line Monitor application

Ready Active Pane: Upper Current Mode: Serial

Figure 4-4: PLXMon in Serial Mode

4.2.2 PLXMon Toolbar

File Command FRegisters Help

!|@|ﬁ|?ﬁ|ﬁ ’}’i| i Establish Serial Connection |

/"G R

Figure 4-5: PLXMon Toolbar

The PLXMon toolbar (Figure 4-5) provides multiple options, which are described below:

e Select a Device !I
View all PLX devices found and select one to work with. Only devices, for which a PLX driver
is loaded, will be available.

4-4

Download to device %
Opens the download dialog, which allows downloading of RAM images and programming of the
FLASH ROM.

View all PCI devices ﬂ

Open a dialog, which displays all PCI devices in the system. Selecting one displays all PCI
registers of the device

Reset device E

In PCI mode, resets a device by using the Software Reset feature of PLX chips. In Serial
Mode, issues a reset command to the local CPU.

Memory Access @

Opens the memory access dialog.

Performance Measure Dialog A
In PCI mode for PLX 9000-series devices, provides a software measure for DMA and Direct
Slave transfers. Refer to the Performance Measure Dialog, section 4.2.5.

Connect to device Establish Serial Connection |

Attempt a serial connection to the device. If the local software implements the BEM protocol,
PLXMon will establish a connection.
% EEFROM

View Register Groups %R I'Ck %‘R % !

Open dialogs for the various register groups and EEPROM. The PLX chip type determines
available groups.

4.2.3 Working with PLXMon Dialogs

4.2.3.1 Register Dialogs

The register dialogs in PLXMon are very simple to use. Users simply enter values, in Hexadecimal format,
and PLXMon will update the value in the chip. For some registers with numerous bit-fields, PLXMon

provides additional detail screens, which can be selected with the details button - J Figure 4-6
demonstrates a typical register dialog.

Tips on working with register dialogs:

e All values are in Hexadecimal format

e The register dialogs are available in both Serial and PCI modes. In Serial mode, PLXMon sends
commands to the local CPU to perform register accesses. In PClI mode, PLXMon calls the PLX
Host API to access registers.

e The register offsets displayed are dependent upon the mode of operation. In Serial mode, the
offsets are from the local CPU’s point of view. Refer to the PLX chip data book for more
information regarding offsets.

¢ In the register dialogs, PLXMon will update a register value as soon as focus shifts from the field
(i.e. the TAB key or clicking on a different field with the mouse).

4-5

Local Configuration Registers

Spaces & Expanzon ROM Direct kMaszter

Space 0 Range (00) | FFOOO00D j 16 MB DM Range [1C]]| FFODDOOO 16 MB
Space 0 Femap (04] | 00000001 I Enabled DM tem Local Base (20)| 50000000
ExpROM Range (10]| 00000000 O bytes DM 140 Local Base (24]| 40000000
ExpROM Remap [14] | 00000010 PCI Remap (21| oooooonz j
Sp O/Exp ROM Desc (18) [FB030043 | FCI 140 Canfig (2c) | 00000000 -» |
Space 1 Range [FO] | FFOOOOOD jﬂa ME Dual Addr Cycle [FC)| 00000000
Space 1 Remap [F&) lm Iv* Enabled 905E,/9E5E only

Space 1 Descriptor (F8) | DDDODT43 j PCI dubiter Cortral (100} | 00000000
Oter Pl Abort Address (104)| 00O00OOD
PO Protection/Endian Dese (0C) | 00305500 j

blode /Db Arbitration (03] | 01200000 j Refrech |

Figure 4-6: Typical PLXMon Register Dialog

4.2.3.2 EEPROM Dialogs

The EEPROM dialogs in PLXMon behave very similar to the register dialog, with a few exceptions.
Additionally, the EEPROM dialogs provide options to save/load values to/from files. Figure 4-7
demonstrates a typical EEPROM dialog.

EEPROM Dialog Differences from Register Dialogs:
e Displayed offsets are from the EEPROM base (default), but offsets of the target register in the
chip can be selected, as well.
e Values are not written to the EEPROM device until the Write button is selected.

e Values can be loaded from or saved to a file. When working with EEPROM files, PLXMon wiill
only load or save enough values to fill the PLX chip’s portion of the EEPROM. Additional values
are discarded.

4-6

9656 EEPROM Values M=

PCI Confiquration B egisters
DeviceMendor D [00] | 96C210B5 Class Code/Rev [04] | 0B2000BA Hot Swap Chl [54] | 00004C06 j

Subspstern 1D [44]| IE5ET0BS Max Lat/lnt Pin & Line (03] | 00000100 PM Capabilties [SC) | 00024201 j
Pt ChlStatus [BO]| 00000000 j

Lacal Confiquration Registers

Space 0 Flange (14[FFO00000 ~»| PD Boundan/Endian Desc (200| 00305500 |
Space 0 Remap (18 Im Direct Master -» PCl Range [20]) Im
Expanzion ROM Range [24] Im Diirect Master Memory Local Baze Addr [34] Im
Expansion ROM Femap (2] | oooooooo Direct Master 1/0 Local Base Addr (38)| 40000000
Space I/Exp ROM Descriptar [2C] lm j Direct b azter -» PCI kMemor Remap [3C] lm j
Space 1 Rangs (42| FFOD0OOD j Direct Master -» PCI 140 PCI Configuration [40) | 00000000 j
Space 1 Remap (4C)| 20000001 Mailhox 0 (0C)| 00000000
Space 1 Descriptor (50) [00000143 | Maibax 1 (10)| oooooooo
Mode/DMa Arbitation (1C)] M200000 -»| POl Arbiter Conrol (53] | 00000000

Display Offzets fraom: © Seral EEPROM Baze
" PL# Chip Register Baze

Load Eile
Befresh Wwirte |
Save b

Figure 4-7: Typical EEPROM Dialog

4.2.3.3 Memory Access Dialog

Selecting the memory access button will open the dialog shown in Figure 4-8. The memory dialog allows
reading of blocks of memory from the local bus or from the DMA buffer, as well as the ability to fill
memory, as shown in Figure 4-9. For more control over memory accesses, use the db, dw, dl, eb, ew
and el commands. Note that in PCI mode, virtual addresses are used. Refer to Section 0 for more
information.

4-7

Memory Display M= E |

Offzet from Memomny Spaces and Buffer Access Type
a0 I 00100000 ’7F S0 51 52 €53 O DA buf ’715'32-I:|it 16kt 3-Bit

R30EANDD . 12345675 ABCDIG7H AGAGGAGA 12345678
R30EADLD: AECD9S76 ACAGGAGA 12345678 ABCDIATE Ep————
G30EADZ0: AGAGGASA 12345678 ABCDIE76 AGAGGAGA =
A30EAD30: 12345678 ABCD9S76 AGAGGAGA 12345678
A30EADAND: AECDYS76 ASAGGASA 12345678 ABCDIATE
AI0EADSO: AGAGGAGA 12345678 ABCDIG76 AGAGGAGA Hest Black
A30EADGD: 12345678 ABCD9S76 AGAGGAGA 12345678
G30EAD7O: AECDYS76 ASAGGASA 12345678 ABCDIATE _
G30EA0S0. 00000000 00000000 00000000 00000000 wiite Black
930EA090. 00000000 00000000 00000000 00000000
S30EADAD: 00000000 000O000O 000QO000 0000000
230EAOE0. 00000000 00000000 00000000 00000000
S30EADCO. 00000000 00000000 00000000 00000000
230EA0DD. 00000000 00000000 00000000 00000000
930EADED: 00000000 00000000 00000000 00000000
S30EAOFD . 00000000 00000000 00000000 00000000

1

Cloge

_fe= |

Figure 4-8: Memory Access Dialog

Memory Fill Options Ei |

™ Fill with random walues

" Fill with incremental walues

Start Y alue ID
Increment ID

& Fill with Pattemn
Pattern |3458?B ABCDYETE ARARRARA,

Fill zize [in bytes] I an
Canizel |

Figure 4-9: Memory Fill Dialog

4.2.4 Specifying PLX Chip Type for Unknown Devices

If the Device/Vendor ID of a PCI 6000 series bridge is modified from its default, PLX software may fail to
properly identify the device as a PLX chip. In this case, PLXMon will not be able to properly display all of
the PCI registers and the EEPROM contents. PLX drivers rely on known Device/Vendor ID combinations
to detect PLX PCI 6000 and 8111 devices. As a result, the IDs are hard-coded into the driver source code.
A customer that changes an ID will, therefore, need to modify the driver source and rebuild it. PLX
software, however, provides an option to manually override the chip type in the event that it is not
detected properly. This can be performed in PLXMon in the “Select a PCI Device” dialog.

4-8

Simply select a device and then select the option to manually set the chip type. Figure 7-13 shows how to
manually select a chip type.

r_

Slot | Fn | DevlD | WenlD Rev | Tupe

oo o0 0o 0s0& 1106 - - Hast bridge device

oo 01 00 Be0G 1106 - - PCl-ta-PCl bridge device

oo 04 00 ORE6 1106 - - |5A bridge device

oo 04 M 05A 1106 - - IDE caontraller

o044 02 3038 1106 - - I15E controller [Univerzal Host)

oo 04 03 3053 1106 - - 5B contraller [Univerzal Host]

oo 04 04 3057 1106 - - Huozt bridge devicd .

T Rt PRt Up date PLX Chip Type

mp 00 OE 00 OOAZ 3388 - - PCl-to-PCl bridge \wWarring

oo 0OF 00 onz2 3388 B150 BB PCl+to-PCI bridge S etting the PL chip to an invalid ar

o0 10 00 1860 10BS 9054 AR Other bridge dewvig | incomect type may result in eratic

M o0 o0 4742 1002 - . \GA-compatible | | Behavior and/or spstem crashes.
Current Chip Type: <Unknowr

Select Mew Chip Tope: |E‘.35|:| -

Select Cancel Set Chip Tvpe | E154 a
E156]
0K | £254
E350
B520 e
6540 bl

Figure 4-10 Manually Setting the PLX Chip Type

After the selection has been made, PLXMon will treat the device as the user-selected type, as can be
seen in Figure 7-14. Before setting the PLX chip type, it is important to note the following:

e No error checking is performed when setting the PLX chip type. If a PLX chip is selected that
does not match the installed hardware, the PLXMon and/or the system may behave erratically.

e Once the chip type is selected, the PLX driver will attempt to automatically detect the PLX
revision. If this is not detected, the revision will default to the value in the PCI revision ID register.

e Modification of the PLX chip type is not permanent. It will remain in effect as long as the PLX
driver is loaded and not re-started. For a permanent setting, it is recommended that the PLX PCI
Service driver is modified and rebuilt to properly detect the custom ID.

e This option may only be used with PLX PCI 6000 series and 8111 devices.

4-9

4.2.5

Select a PCl Device

1087

Buz | Slot | Frn | DewlID | YenlID | PL¥ | Rev | Type

oo o0 0o 0e0& 1106 Hoszt bridge device

oo o1 00 B6R05 1106 PCl-to-PCl bridge device

o0 04 00 ORE6E 1106 |54 bridge device

oo o4 M 0571 1106 IDE controller

oo 04 02 3033 1106 15B contraller [Universal Host]
oo 04 03 3038 1106 ISE contraller [Univerzal Hast]
oo 04 04 3067 1106 Hoszt bridge device

oo oo 0o 9080 Ethernet controller

E350 Ad PCl-to-PCI bridge device
oo oF 00 on22 6150 BE PCl-to-PCl bridge device
oo 10 00 1860 10B5 9054 AR Other bridge device
m oo 0o 4742 1002 WaEs-compatible dizplay contr...
Select | Cancel Set Chip Type

Figure 4-11 Completed PLX Chip Type Override

Performance Measure Dialog

PLXMon includes a performance measure dialog, which provides a software measure of data transfer
performance. The dialog supports DMA and Direct Slave transfers, with multiple options for each. This
section describes the details of how to use the dialog. Figure 4-12 shows a snapshot of the dialog.

4-10

4251

PLX Performance Measure @

(%) Direct Slave # Host CPU

PCIEAR tolUse |BARD
Offset into BAR 00oaaaan

Channel Ilze bd ethiod Aooezs Size
COPLXaPl O bt & 32-bit
(%) Direct (0 16-hit O B4-it
Global Optionz
Transfer Local Burst
(%) Read from Device (%) Dizabled
1 Wwiite to Device LW

Biyte Count | 00000100 O Infinite

2 Statiztics

= T st Completed = Murnxfers | 765,143 513

Total Transfers: 7B6,148.513

Totasl Data : 18265 GB Total Data | 152,66 GB

Total Time : 49.00 zeconds

Overall Rate : 3.73GE/s CurRate | 373 GB/s

"""""""""""" Elapzed Time

Feady to start test.. 3 00k 00m 503

Time

Start] [Cloze]

Figure 4-12 Performance Measure Dialog

Notes before Using the Performance Measure

Before using the performance dialog, it is important to be aware of the following imitations and notes:

The Performance Measure is a simple software measurement of performance. The transfer rate
is calculated by dividing the total number of bytes transferred by the total elapsed time. As a
result, software overhead is a factor in the measure, although the Performance Measure is very
efficient and includes very little overhead.

The transfer rates provided by the Performance Measure should be treated as relative humbers
rather than absolute values. The intention is to start with some base configuration, tweak some

4-11

options and/or chip settings, then re-run the test to determine if performance has improved and
repeat to achieve the optimal configuration.

e The Performance Measure does not validate the addresses used to transfer data to/from. This
includes the PCI and local addresses for DMA and the local address for Direct Slave. It is left to
the user to ensure that sufficient memory is provided for the transfer.

e The Performance Measure does not perform any data error checking. It is assumed that
hardware is working properly.

e When selecting to use the PLX API to transfer data, it is important to note that there is a
significant overhead with doing so. The API sends and receives messages from the PLX driver,
which performs the actual transfer. If data transfer sizes are relatively small, the API overhead will
be a significant impact to performance. As data transfer sizes get larger, the API overhead
becomes less significant.

e The Performance Measure cannot guarantee burst transactions. Software has no means to force
burst transactions. All software can do is enable burst in the hardware and, if conditions are right,
the hardware will initiate burst transactions.

e Other than the options specified, the Performance Measure will leave chip settings intact. It is
assumed that the chip is properly configured to access the intended devices. For example, if PCI
BAR 2 on a 9054 will be used to access an 8-bit device, it is assumed that the Space 0 Bus
Region Descriptor is configured properly and that the Space 0 Remap register is set to properly
access the desired device.

4.25.2 Performance Measure Options

The performance measure provides numerous options to perform different type of transfers in different
configurations. The individual options are explained below.

4.25.3 DMA Performance Test

When the DMA test is selected, the Performance Measure will perform DMA transfers to or from the
specified addresses. The test continuously repeats the same DMA transfer until it is halted

The items below provide details about the individual DMA options. When the Performance Measure is
initially opened and DMA is available, it will provide the DMA Common Buffer properties, which are
provided by the PLX driver. This is the same information obtained with PIxPciCommonBufferProperties.

Note: DMA is available only to PLX devices that include a DMA engine, including the 9080, 9054, 9056,
9656, & 8311.

e Local Address This determines the starting 32-bit local address where data is transferred to/from.
This value is placed directly into the Local address register of the DMA engine.

e PCI Address This determines the starting 32-bit PCI physical address where data is transferred
to/from. This address, for example, may be the PLX DMA Common Buffer PCI address or an
address taken from the PCI BAR of another PCI device, such as an Ethernet controller. This
value is placed directly into the PCI address register of the DMA engine.

e Channel This determines which DMA channel the Performance Measure will use.

e Use This determines whether DMA completion is detected by waiting for the interrupt or polling
the DMA done bit. In general, polling results in better transfer rates due to less overhead, but the
CPU is highly utilized, so the end user system performance suffers.

e Transfer This determines which direction the DMA engine will transfer data.
e Byte Count This is the number of bytes transferred during each test iteration.

e Bursting This option determines whether DMA busting is enabled in the hardware. Note that the
devices that the DMA engine transfers to/from must support the selected type of burst transaction.

4-12

4254

Direct Slave Performance Test

When the Direct Slave test is selected, the Performance Measure will use the Host CPU to transfer data
to/from a PLX device through one of the PCI BAR spaces. The test will repeat continuously until it is
halted. Figure 4-13 depicts a completed Direct Slave test and the reported results.

PLX Performance Measure @

" DMA * Direct Slave / Host CPU

FCIBAR tolUse |BARZ -
Offzet into BAR 00100000

b ethod Aocess Size
" PL &P 7 8-hit & 32-hit
* Direct £ 16-hit

i
D

Global Dphions
Transfer Bursting
" Read fram Device " Dizabled

* ‘wihite to Device O YR

Byte Count | 00010000 " Infinite

Statizticz
MHum =fers 10,704

PL Drriver w4.30 ~
Hoszt Direct Slave: Bunning...

= T st Completed = Tatal Data | £ES.00 MB

Total Transfers: 10,704

- Curr R at
TotslData : 669.00 ME urate | 16.32MB/s
Taotal Time : 41.85 zeconds Elapsed Time
Owerall Rate : 1632 MB/s "

00k 00 425

Start | Cloze

Figure 4-13 Sample Direct Slave Performance Test

The items below provide details about the individual Direct Slave options.

PCI BAR to Use This determines which PCIl BAR space to use for the transfer. The PCI BAR
must be a valid PClI memory space that is enabled on the PLX device. I/O type spaces are not
supported. It is assumed that the PCI space is properly configured to access the desired local
device. This includes the remap and bus region descriptors.

Offset into PClI BAR This value determines the starting offset into the PCI BAR where the
Performance Measure will transfer data.

Method This option determines whether the PLX API is used to transfer data or a direct access is
performed. The PLX API method will use the functions PIxBuslopRead and PIxBuslopWrite,
whereas, the direct method will obtain a virtual address for the PCI BAR with PIxPciBarMap, then
use that address to directly access the PCI space. The direct method effectively bypasses the
PLX API.

Access Size This option determines how data is accessed, whether it is 8-bit, 16-hit, or 32-hit.
This option should not be confused with the “Bus Width” of the Bus Region Descriptor for a space.
The Bus Width is used to specify the port-size of the connected local device, for example, a 16-bit
flash device. The Access Size determines the type of cycle issued by the Host CPU.

Transfer This determines whether the Host CPU reads from or writes to the PCI BAR.

4-13

4.2.6

In the lower pane of PLXMon, a command-line interface is provided, as show in Figure 4-14. The list of

Byte Count This is the number of bytes transferred during each test iteration.

Bursting This option determines whether Direct Slave busting is enabled in the Bus Region
descriptor for the PCI space. This option does not guarantee that burst transactions will occur,
since software is not able to force bursting. In a standard PC, for example, the Host Bridge does
not allow burst reads from PCI devices to the Host CPU, resulting in typically poor burst read
performance. Note that the devices that data will be transferred to/from must support the selected

type of burst transaction.

The Command-Line Interface

available command is show in Table 4-1.

7

Help 1= awailable for the folloving commands:

dl dw db =l =W eb

? b il iw ib vars
ol ow oh TET reg pci
clear guit

3

< |

For more information.

type 'HELFP <command:’' .

-

sl

Ready |Active Pane: Lower |Currert Made: PCT 2
Figure 4-14: Command-line Interface
Command Description
db, dw, dI Read memory using Byte (8-bit), Word (16-bit), Longword (32-bit)
eb, ew, el Write to memory using Byte (8-bit), Word (16-bit), Longword (32-bit)
ib, iw, il Read from I/O port using Byte (8-bit), Word (16-bit), Longword (32-bit)

ob, ow, ol Write to 1/0 port using Byte (8-bit), Word (16-bit), Longword (32-bit)

pci Read/Write to a PCI register of the PLX chip

reg Read/Write to a local register of the PLX chip

vars Display PLXMon variables. See Section 4.2.8

ver Display version information

clear Clear the command-line pane

quit Exits PLXMon

4.2.7

In PCI mode, PLXMon executes as an application and, therefore, must use virtual addresses to access
memory. A PCI BAR address, for example, cannot be referenced directly. As a result, PLXMon relies on
PLX drivers to provide a virtual mapping for all memory spaces that may be accessed. This includes any

Table 4-1: PLXMon Command-line Commands

Working with Virtual Addresses

valid PCI BAR memory spaces and the DMA buffer allocated by the driver.

4-14

Note: Virtual addresses are not used for I/O ports, only for memory regions. Although the driver
performs the actual 1/0O access, the referenced port address is the actual address found in the PCI BAR
register. 1/O regions are not mapped into virtual space.

4.2.8 Command-Line Variables

PLXMon creates some variables to aid users with dealing with virtual addresses. Figure 4-15
demonstrates the vars command in PLXMon, which lists the default variables and the memory region
they represent. Variables can be used with the d(b,w,l) or e(b,w,l) commands.

Note: Accessing memory with these variables results in a direct memory access from PLXMon. The
PLX driver just provides the initial virtual mapping, but is completely bypassed during memory accesses.

File Command Reqisters Help

!|@|ﬁ|?ﬁ|ﬁ ";?i| Establish Serial Connection |

RGP M e #

Al >
rVars A

Virtual Phv=ical =

Variable Address Address Description —
Plx ooDaooon —_ Plx register address
=0 aooaoonn - Space 0 addres=
=1 o1Da0oonn —_ Space 1 address
=2 gooooonn - Space ¢ addres=
=3 gooooonn —_— Space 3 addres=
HBuf goo7o00o0 01830000 DMA =cratch buffer (64 Kh)

»el =0+100 1002beef

¥

»dl =0+100

0oD390100:; 1002BEEF 472161EF 20247059 7B295442 . % . Gla., sp¥{)T.
00D30110: GS5EF7690 7E0166DF 3D231C6F GA334310 T w1~ f =f oZ3H.
0oDan1zo: 1AZ2DSC40 0A300D17F 62AET9B3 15376920 . —@. 0. b@y® 71
o0D90130: A17C25D4 737811B6 SBEAIF39 7D7A00SY9 a|¥ . s=x. M[. . 91=z.Y
00D90140: 1C492280 eABAOESE OGAEIEFS 2395e37F I" . j..01.8: #1h.
00D30150: 14F6639F 6AGY7O0FS 7308384D 1FF534C% | o .jgp.=.8M. 4.
00090160 7FCEALI72E 27087746 G1B73A76 2BEBR774 |2, .' w.a. :w+[gt
00D30170: 463F724F 4AFBY21E1 7EAF?716 075D3840 FPrO0 | ™ w. .]8@
>

Ready Active Pane: Lower Zurrent Mode: PCI

Figure 4-15: PLXMon Variables

4-15

5 PLX SDK API Reference

This section provides the details of all PLX API functions.

5.1 PLX API Functions

API Function Name

Description

PIxPci_ApiVersion

Get the PLX API library version information

PIxPci_ChipTypeGet

Get the PLX chip type and revision

PIxPci_ChipTypeSet

Set the PLX chip type

PIxPci_CommonBufferProperties

Returns the properties of the PLX driver reserved buffer

PIxPci_CommonBufferMap

Maps the common buffer to user space

PIxPci_CommonBufferUnmap

Unmaps the common buffer from user space

PIxPci DeviceClose

Release a device

PIxPci_DeviceFind

Search for a device

PIxPci DeviceFindEx

Search for a device with advanced options (e.g. I2C)

PIxPci_DeviceReset

Reset a PLX device

PIxPci_DeviceOpen

Select a device

PIxPci_DmaChannelOpen

Opens & initializes a DMA channel

PIxPci_DmaChannelClose

Release a DMA channel

PIxPci_DmaGetProperties

Gets the current properties of a DMA channel

PIxPci DmaSetProperties

Sets the properties of a DMA channel

PIxPci DmaControl

Control a DMA channel

PIxPci DmaStatus

Get current status of a DMA channel

PIxPci DmaTransferBlock

Transfers a data buffer using block DMA

PIxPci DmaTransferUserBuffer

Transfers a user-mode buffer using a DMA channel

PIxPci_DriverProperties

Get PLX driver properties

PIxPci DriverScheduleRescan

Informs PLX Service driver to rebuild its internal device list

PIxPci_DriverVersion

Get the PLX driver version information

PIxPci_EepromPresent

Determine if an EEPROM is present on a PCI device

PIxPci_EepromProbe

Probes for the physical presence of an EEPROM

PIxPci_EepromCrcGet

Get the CRC value of the EEPROM

PIxPci_EepromCrcUpdate

Update the CRC value of the EEPROM

PIxPci EepromSetAddressWidth

Manually sets the EEPROM addressing width

PIxPci_EepromReadByOffset

Read a 32-bit value from the EEPROM at a specified offset

PIxPci_EepromWriteByOffset

Write a 32-bit value to the EEPROM at a specified offset

PIxPci_EepromReadByOffset_16

Read a 16-bit value from the EEPROM at a specified offset

PIxPci_EepromWriteByOffset 16

Write a 16-bit value to the EEPROM at a specified offset

PIxPci_GetPortProperties

Get the port properties of the selected device

PIxPci Getl2cPorts

Gets the installed I°C USB devices and their availability

PIxPci_I2cVersion

Gets 12C version information

PIxPci loPortRead

Reads one or more values from an 1/O port

PIxPci loPortWrite

Writes one or more values to an 1/O port

PIxPci_InterruptDisable

Disables specific interrupts of the PLX chip

PIxPci_InterruptEnable

Enables specific interrupts of the PLX chip

PIxPci_NotificationCancel

Cancels and interrupt notification object

PIxPci_NotificationRegisterFor

Registers for interrupt notification

PIxPci_NotificationStatus

Returns the status of the interrupt notification object

5-1

5-2

APl Function Name

Description

PIxPci NotificationWait

Wait for an interrupt notification event

PIxPci_ PciBarSpaceRead

Reads a block of data from the specified PCI BAR space

PIxPci_PciBarSpaceWrite

Writes a block of data to the specified PCI BAR space

PIxPci_PciBarMap

Maps a PCI BAR space to user virtual space

PIxPci_PciBarProperties

Returns the properties of a PCI BAR space

PIxPci_PciBarUnmap

Unmaps a PCI BAR space from user virtual space

PIxPci_PciRegisterRead

Read a PCI configuration register of a PCI device

PIxPci_PciRegisterWrite

Write to a PCI configuration register of a PCI device

PIxPci_PciRegisterReadFast

Reads a PCI register from the selected device

PIxPci_PciRegisterWriteFast

Writes to a PCI register on the selected device

PIxPci_PciRegisterRead_BypassOS

Reads a PCI register by bypassing the OS services

PIxPci_PciRegisterWrite BypassOS

Writes to a PCI register by bypassing the OS services

PIxPci PerformanceCalcStatistics

Calculates port performance statistics

PIxPci_PerformanceGetCounters

Reads the performance counters from a device

PIxPci_PerformancelnitializeProperties

Intialize the PLX performance object

PIxPci PerformanceMonitorControl

Controls the PLX chip’s perfomance monitor

PIxPci_PerformanceResetCounters

Resets the PLX chips’s performance counters

PIxPci_PhysicalMemoryAllocate

Allocate Physical memory for the selected device

PIxPci_PhysicalMemoryFree

Free the allocated Physical memory for the selected device

PIxPci_PhysicalMemoryMap

Map the Physical memory to a Virtual address

PIxPci_PhysicalMemoryUnmap

Unmap Physical memory to the Virtual Address

PIxPci_PIxRegisterRead

Reads a PLX-specific register from the selected device

PIxPci_PIxRegisterWrite

Writes to a PLX-specific register on the selected device

PIxPci_PIxMappedRegisterRead

Reads a Memory mapped register from the selected device

PIxPci_PIxMappedRegisterWrite

Writes to a Memory mapped register on the selected device

PIxPci VpdRead

Uses the VPD feature to read VPD data

PIxPci VpdWrite

Uses the VPD feature to write VPD data

PIxPci_ApiVersion

Syntax:

PLX_STATUS

PIxPci_ApiVersion(
U8 *pVersionMajor,
U8 *pVersionMinor,
U8 *pVersionRevision
)

PLX Chip Support:

N/A

Description:

Returns the SDK API version information

Parameters:

pVersionMajor
A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor
A pointer to an 8-bit buffer to contain the Minor version number

pVersionRevision
A pointer to an 8-bit buffer to contain the Revision version number

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

Usage:

U8 VerMajor;
U8 VerMinor;
U8 VerRev;

PIxPci_ApiVersion(
&VerMajor,
&VerMinor,
&VerRev

)

Cons_printf(
“PLX SDK API v%d.%d%d\n”,
VerMajor,
VerMinor,
VerRev

)

5-3

PIxPci_ChipTypeGet

Syntax:

PLX_STATUS
PIxPci_ChipTypeGet(
PLX_DEVICE_OBJECT *pDevice,

ule *pChipType,
us *pRevision
)

PLX Chip Support:
All PLX devices

Description:

Returns the PLX chip type and revision if possible.

Parameters:

pDevice
Pointer to an open device

pChipType
Pointer to a 16-bit buffer to contain the PLX chip type

pRevision
Pointer to an 8-bit value to contain the revision

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device

Notes:

The chip type is returned as a hex number matching the chip number. For example, 0x6466 = 6466. For some
PLX chips, different revisions are indistinguishable from each other. In the case, the revision will be the latest
version.

If the PCI device is not a PLX chip or is not identified properly by the driver, a value of 0 will be returned for the
chip type and revision.

Usage:

ug Revision;
ui6 ChipType;
PLX_STATUS rc;

rc =
PIxPci_ChipTypeGet(
pDevice,
&ChipType,
&Revision
)
if (rc = ApiSuccess)
// Error
}
else
{
Cons_printf(
" Chip type: %04X\n"
' Revision : %02X\n"",
ChipType, Revision
}

PIxPci_ChipTypeSet

Syntax:

PLX_STATUS
PIxPci_ChipTypeSet(
PLX_DEVICE_OBJECT *pDevice,

ule ChipType,
us Revision
)

PLX Chip Support:
All PLX devices

Description:

Sets the PLX chip type and revision to force a specific identification.

Parameters:

pDevice
Pointer to an open device

ChipType
The desired PLX chip type, in Hex, or 0 for <Unknown>. Available chip types are 8532, 8524, 8114, etc.

Revision
The desired revision ID. If the value is OxFF, the default chip revision will be used, which is usually taken
directly from the PCI Revision ID register.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device
ApiUnsupportedFunction | The function is not supported by the installed driver (i.e. the device is in Non-Transparent mode)
ApilnvalidData The ChipType parameter was invalid or not a supported type

Notes:

The chip type should be a hex number matching the chip number. For example, 0x6466 = 6466. A value of 0
may be passed to clear the chip type.

When modifying the Device/Vendor ID of a PLX PCI-to-PCI bridge, it is recommended that the PLX driver be
modified to properly identify the device. PIxPci_ChipTypeSet is recommended for temporary use only for debug
purposes.

Warning: This option is typically used only when a PLX PCI-to-PCI bridge Device/Vendor ID is modified and the
PLX PCI Service driver is not able to properly identify the device. Setting the chip type will force the PLX driver,
after it is already loaded, to treat the device as a specific PLX chip and enable chip-specific features, such as
EEPROM access. Setting the chip type to an incorrect or invalid setting may result in erratic behavior system
crashes.

5-6

Usage:
PLX_STATUS rc;

// Force the chip tpye & revision

rc =
PIxPci_ChipTypeSet(
pDevice,
0x6520, // 6520 device
OxCA // Revision CA
)
if (rc = ApiSuccess)
{
// Error
}
// Force the chip tpye, but use default revision
rc =
PIxPci_ChipTypeSet(
pDevice,
0x6152, // 6152 device
us)-1 // Use default revision
)
if (rc = ApiSuccess)
// Error
}
// Clear the cuurent type to configure device as “Non-PLX”
rc =
PIxPci_ChipTypeSet(
pDevice,
o, // Clear chip type
0 // Clear revision
)
if (rc = ApiSuccess)
{
// Error
}

5-7

PIxPci_CommonBufferProperties

Syntax:

PLX_STATUS

PIxPci_CommonBufferProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL_MEM *pMemorylInfo

)
PLX Chip Support:
All PLX devices

Description:

Returns the common buffer properties.

Parameters:

pDevice
Pointer to an open device

pMemoryinfo
A pointer to a PLX_PHYSICAL _MEM structure which will contain information about the common buffer

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid

Notes:

This function will only return properties of the common buffer. It will not provide a virtual address for the buffer.
Use PIxPci_CommonBufferMap to get a virtual address.

PLX drivers allocate a common buffer for use by applications. The buffer size requested is determined by a
PLX registry entry (refer to the PLX driver registry options in this manual). The driver will attempt to allocate the
buffer, but the operating system determines the success of the attempt based upon available system resources.
PLX drivers will re-issue the request for a smaller-sized buffer until the call succeeds.

The common buffer is guaranteed to be physically contiguous and page-locked in memory so that it may be used for
operations such as DMA. PLX drivers do not use the common buffer for any functionality. Its use is reserved for
applications.

Coordination and management of access to the buffer between multiple processes or threads is left to applications.
Care must be taken to avoid shared memory issues.

5-8

Usage:

PLX_STATUS rc;
PLX_PHYSICAL MEM Bufferinfo;

// Get the common buffer information

rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo
)
if (rc = ApiSucess)
{

// Error — Unable to get common buffer properties

}

Cons_printf(

“Common buffer information:\n”

Bus Physical Addr: %08Ix\n”
“ CPU Physical Addr: %08Ix\n”
“ Size . %d bytes\n”,
BufferiInfo.PhysicalAddr,
BufferInfo.CpuPhysical,
Bufferinfo.Size

);

PIxPci_CommonBufferMap

Syntax:

PLX_STATUS

PIxPci_CommonBufferMap(
PLX_DEVICE_OBJECT *pDevice,
VOID **pVa

)
PLX Chip Support:
All PLX devices

Description:

Maps the common buffer into user virtual space and return the base virtual address.

Parameters:

pDevice
Pointer to an open device

pVa
A pointer to a buffer to hold the virtual address

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApilnvalidAddress Buffer address is invalid
ApilnsufficientResources Insufficient resources for perform a mapping of the buffer
ApiFailed Buffer was not allocated properly

Notes:

Mapping of the common buffer into user virtual space may fail due to insufficient Page-Table Enties (PTES).
The larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to PIxPci_CommonBufferUnmap.

5-10

Usage:

us value;
VOID *pBuffer;
PLX_STATUS rc;

PLX_PHYSICAL_MEM Bufferinfo;

// Get the common buffer information
rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo

)
if (rc = ApiSucess)

// Error — Unable to get common buffer properties

}
// Map the buffer into user space
rc =
PIxPci_CommonBufferMap(
pDevice,
&pBuffer
)

if (rc = ApiSucess)

// Error — Unable to map common buffer to user virtual space

}

// Write 32-bit value to buffer
(U32) ((U8*)pBuffer + 0x100) = 0x12345;

// Read 8-bit value from buffer
value = *(U8*) ((U8*)pBuffer + 0x54);

5-11

PIxPci_CommonBufferUnmap

Syntax:

PLX_STATUS

PIxPci_CommonBufferUnmap(
PLX_DEVICE_OBJECT *pDevice,
VOID **pVa

)
PLX Chip Support:
All PLX devices

Description:

Unmaps the common buffer from user virtual space.

Parameters:

pDevice
Pointer to an open device

pVa
The virtual address of the common buffer originally obtained from PIxPci_CommonBufferMap

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApilnvalidAddress Virtual address is invalid or buffer was not allocated properly
ApiFailed The buffer to unmap is not valid

Notes:

It is important to unmap the common buffer when it is no longer needed to release mapping resources back to
the system. The buffer should be un-mapped before calling PIxPci_DeviceClose to close the device. The
virtual address will cease to be valid after closing the device or after un-mapping the buffer.

5-12

Usage:

VOID *pBuffer;
PLX_STATUS rc;
PLX_PHYSICAL MEM Bufferinfo;

// Get the common buffer information

rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo
)
if (rc = ApiSucess)
{
// Error — Unable to get common buffer properties
}
// NMap the buffer into user space
rc =
PIxPci_CommonBufferMap(
pDevice,
&pBuffer
)
if (rc = ApiSucess)
{
// Error — Unable to map common buffer to user virtual space
}
//
// Use the common buffer as needed
//
// Unmap the buffer from user space
rc =
PIxPci_CommonBufferUnmap(
pDevice,
&pBuffer
)

if (rc = ApiSucess)

// Error — Unable to unmap common buffer from user virtual space

}

5-13

PIxPci_DeviceClose

Syntax:

PLX_STATUS
PIxPci_DeviceClose(

PLX_DEVICE_OBJECT *pDevice
)

PLX Chip Support:

All devices

Description:

Releases a PLX device object previously opened with PIxPci_DeviceOpen().

Parameters:

pDevice

Pointer to an open device

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened

Usage:

5-14

PLX_STATUS rc;

// Release the open PLX device
rc =
PIxPci_DeviceClose(
pDevice

)

if (rc = ApiSuccess)

// ERROR — Unable to release PLX device

PIxPci_DeviceOpen

Syntax:

PLX_STATUS

PIxPci_DeviceOpen(
PLX_DEVICE_KEY *pKey,
PLX_DEVICE_OBJECT *pDevice

):
PLX Chip Support:

All devices

Description:
Selects a specific PCI device for later use with PLX API calls. The device is selected based on the criteria in
PLX_DEVICE_KEY.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure which contains one or more search criteria.

pDevice
Pointer to a PLX_DEVICE_OBJECT structure which will describe the selected PCI device.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApiNoActiveDriver A valid PLX driver is not loaded in the system
ApilnvalidDevicelnfo The device object is invalid or the key does not match an installed device
ApilnvalidDriverVersion The PLX driver version does not match the API library version
ApiObjectAlreadyAllocated | The device object is already open or in use

Notes:

Use PIxPci_DeviceFind to query the driver for installed PCI devices and fill in the PLX_DEVICE_KEY
information.

If the function returns ApiSuccess, any missing key information will be filled in.

5-15

Usage:

PLX_STATUS rc;
PLX_DEVICE_KEY DeviceKey;
PLX_DEVICE_OBJECT Device;

// Clear key structure to select first device
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX DEVICE_KEY));

// Open device

rc =
PIxPci_DeviceOpen(

&DeviceKey,
&Device
)

if (rc = ApiSuccess)

{ // Error

}

else

{

Cons_printf(
"Selected: %04x %04x [b:%02x s:%02x F:%02x]\n"",
DeviceKey.Deviceld, DeviceKey.Vendorld,
DeviceKey.bus, DeviceKey.slot, DeviceKey.function

);

5-16

PIxPci_DeviceFind

Syntax:

PLX_STATUS

PIxPci_DeviceFind(
PLX_DEVICE_KEY *pKey,
us DeviceNumber

):
PLX Chip Support:

All devices

Description:

Locates a specific PCle device and fills in the corresponding device key information.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApiNoActiveDriver A valid PLX driver is not loaded in the system
ApilnvalidDevicelnfo The key does not match an installed device

Notes:

The fields in the PLX DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

5-17

Usage:

5-18

PLX_STATUS rc;
PLX_DEVICE_KEY DeviceKey;

// Clear key structure to find Ffirst device
memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

rc =
PIxPci_DeviceFind(
&DeviceKey,
0 // Select 1st device matching criteria

)
if (rc = ApiSuccess)

// ERROR — Unable to locate matching device
}

// Search for the third device matching a specific Vendor ID
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX_DEVICE_KEY));

// Specify Vendor 1D

DeviceKey.Vendorld = 0x10b5; // PLX Vendor 1D
rc =
PIxPci_DeviceFind(
&DeviceKey,
2 // Select 3rd device matching criteria
E

if (rc = ApiSuccess)

// ERROR — Unable to locate matching device
}

PIxPci_DeviceFindEx

Syntax:

PLX_STATUS

PIxPci_DeviceFindEx(
PLX_DEVICE_KEY *pKey,
us DeviceNumber,
PLX_API_MODE ApiMode,
PLX_MODE_PROP *pModeProp
us DeviceNumber

)
PLX Chip Support:

All devices

Description:

This function is similar to PIxPci_DeviceFind() but also supports finding a device using methods other than
PCI/PCI Express, such as I°C.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

ApiMode
Specifies the PLX_API_MODE to use to search for a device. If ApiMode is PLX_API_MODE_PCI, this
function behaves identical to PIxPci_DeviceFind().

pModeProp
Contains the properties used for detecting a device. The items used in the structure depend upon the
value of the ApiMode parameter. For example, if ApiMode is PLX_API_MODE_|2C_AARDVARK, then
only the I2c union parameters in the structure are used.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

For PCI mode, a valid PLX driver is not loaded in the system

ApiNoActiveDriver For I°C mode, the Aardvark USB device does not exist or driver is not installed

ApilnvalidDevicelnfo The key does not match an installed device
ApiUnsupportedFunction Attempt to select TCP connection which is not yet supported
Notes:

The fields in the PLX_DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

5-19

For I°C, if the 12c.SlaveAddr field is -1 (FFFFh), the API will auto-probe all possible PLX I°C addresses to detect
a chip (e.g. 58->5Fh, 68->6Fh, etc).

At this time, the only I°C device supported is the TotalPhase Aardvark USB I°C /SPI tool. Other I°C devices may
be suE)ported in future versions of the SDK. The Aardvark USB driver must be loaded for the PLX API to work
over I°C.

Connections over TCP/IP are not yet supported in the PLX API. This may be supported in a future version of
the SDK.

Usage:

PLX_STATUS rc;
PLX_MODE_PROP ModeProp;
PLX_DEVICE_KEY DeviceKey;

// Clear key structure to find First device
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX DEVICE_KEY));

// Set 12C properties

ModeProp.l12c.l12cPort = 0O; // Use the first 12C USB device
ModeProp.12c.SlaveAddr = -1; // Auto-probe for PLX chip
ModeProp.12c.ClockRate = 100; // Set 12C clock rate in KHz

// Find first 12C PLX device/port
rc =
PIxPci_DeviceFindEx(
&DeviceKey,
0 // Select 1st device matching criteria
PLX_API_MODE_12C_AARDVARK, // Connect over 12C
&ModeProp

)
if (rc = ApiSuccess)

// ERROR — Unable to locate matching device
}

5-20

PIxPci_DeviceReset

Syntax:

PLX_STATUS
PIxPci_DeviceReset(
PLX_DEVICE_OBJECT *pDevice

)

PLX Chip Support:
All PLX 9000 & 8311 devices

Description:

Resets the selected PLX device

Parameters:

pDevice
Pointer to an open PCI device

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiUnsupportedFunction Reset of the selected device is not supported

Usage:
PLX_DEVICE_OBJECT Device;

// lIssue reset to PLX device

PIxPci_DeviceReset(
pDevice

)

5-21

PIxPci_DmaChannelOpen

Syntax:

PLX_STATUS
PIxPci_DmaChannelOpen(
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PROP *pDmaProp
):

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Opens and initializes a DMA channel to prepare for later transfers. Starting with SDK 6.10, it is recommended
to set the pDmaProp parameter to NULL and use other PLX APIs to retrieve and update DMA properties. Refer
to PIxPci_DmaGetProperties & PIxPci_DmaSetProperties.

Parameters:

pDevice
Pointer to an open device

channel
The number of the DMA channel to open

pDmaProp
Pointer to a structure containing the properties to use for initializing the DMA channel. If this NULL, the
DMA properties will not be modified.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApiPowerDown The PLX device is in a power state that is lower than required for this function
ApiDmaChannellnvalid The DMA channel is not supported by the PLX chip
ApiDmaChannelUnavailable The DMA channel is in use by another process

Usage:

// Open the DMA channel
PIxPci_DmaChannelOpen(

pDevice,

o, // Channel 0O

NULL // Do not modify current DMA properties
)

5-22

PIxPci_DmaChannelClose

Syntax:

PLX_STATUS

PIxPci_DmaChannelClose(
PLX_DEVICE_OBJECT *pDevice,
us channel,

):
PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Closes a previously opened DMA channel

Parameters:

pDevice
Pointer to an open PCI device

channel
The number of the DMA channel to close

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApiPowerDown The PLX device is in a power state that is lower than required for this function
ApiDmaChannellnvalid The DMA channel is not supported by the PLX chip
ApiDmaChannelUnavailable The DMA channel has not been opened
ApiDmalnProgress A DMA transfer is in progress
ApiDmaPaused The DMA channel is paused

Notes:

The DMA channel cannot be closed by this function if a DMA transfer is currently in-progress. The DMA status
is read directly from the DMA status register of the PLX chip. Note that a “crashed” DMA engine reports DMA in-
progress. A software reset of the PLX chip may be required in this case. DMA “crashes” are typically a result of
invalid addresses provided to the DMA channel. For PLX 9000 series devices, refer to PIxPci_DeviceReset.

5-23

Usage:
PLX_STATUS rc;

rc =
PIxPci_DmaBlockChannelClose(
pDevice,
1 // Channel 1
):
if (rc = ApiSuccess)
{
// Reset the device if a DMA is in-progress
if (rc == ApiDmalnProgress)
PIxPci_DeviceReset(
pDevice
):
// Attempt to close again
PIxPci_DmaChannelClose(
pDevice,
1
)
}
}

5-24

PIxPci_DmaGetProperties

Syntax:
PLX_STATUS

PIxPci_DmaGetProperties(
PLX_DEVICE_OBJECT *pDevice,

us
PLX_DMA_PROP

):
PLX Chip Support:

channel,
*pDmaProp

9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Returns the current DMA properties for a DMA channel

Parameters:

pDevice

Pointer to an open device

channel

The number of the DMA channel to open

pDmaProp

Pointer to a structure that will contain the DMA properties

Return Codes:

Code

Description

ApiSuccess

The function returned successfully

ApiNullParam

One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not valid

ApiPowerDown

The PLX device is in a power state that is lower than required for this function

ApiDmaChannellnvalid

The DMA channel is not supported by the PLX chip

ApiDmaChannelUnavailable

The DMA channel is in use by another process

5-25

Usage:
PLX_DMA_PROP DmaProp;

// Get current DMA properties
PIxPci_DmaGetProperties(
pDevice,
0, // DMA channel O
&DmaProp

)

// Modify desired properties based on chip type
if ((PIXChip & OxFFO0) == 0x8600)

{
// Use relaxed ordering for data read requests
DmaProp.RelOrderDataReadReq = 1;
// Support 128B read request TLPs
DmaProp.MaxSrcXferSize = PLX DMA MAX SRC TSIZE 128B;
}
else
{
// Enable READY# input and burst of 4 DWORDS
DmaProp -Readylnput = 1;
DmaProp.Burst =1;
DmaProp.Burstinfinite = 0;
}

// Update DMA with new properties
PIxPci_DmaSetProperties(
pDevice,
o, // DMA channel O
&DmaProp

)

5-26

PIxPci_DmaSetProperties

Syntax:
PLX_STATUS

PIxPci_DmaSetProperties(
PLX_DEVICE_OBJECT *pDevice,

us
PLX_DMA_PROP

):
PLX Chip Support:

channel,
*pDmaProp

9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Updates the DMA properties for a DMA channel

Parameters:

pDevice

Pointer to an open device

channe

The number of the DMA channel to open

pDmaProp

Pointer to a structure containing the DMA properties

Return Codes:

Code

Description

ApiSuccess

The function returned successfully

ApiNullParam

One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not valid

ApiPowerDown

The PLX device is in a power state that is lower than required for this function

ApiDmaChannellnvalid

The DMA channel is not supported by the PLX chip

ApiDmaChannelUnavailable

The DMA channel is in use by another process

5-27

Usage:
PLX_DMA_PROP DmaProp;

// Fill in current DMA properties
PIxPci_DmaGetProperties(
pDevice,
0, // DMA channel O
&DmaProp

)

// Modify desired properties based on chip type
if ((PIXChip & OxFFO0) == 0x8600)

{
// Use relaxed ordering for data read requests
DmaProp.RelOrderDataReadReq = 1;
// Support 128B read request TLPs
DmaProp.MaxSrcXferSize = PLX DMA MAX SRC TSIZE 128B;
}
else
{
// Enable READY# input and burst of 4 DWORDS
DmaProp -Readylnput = 1;
DmaProp.Burst =1;
DmaProp.Burstinfinite = 0;
}

// Update DMA with new properties
PIxPci_DmaSetProperties(
pDevice,
o, // DMA channel O
&DmaProp

)

5-28

PIxPci_DmacControl

Syntax:

PLX_STATUS
PIxPci_DmaControl (

PLX_DEVICE_OBJECT *pDevice,

us

PLX_DMA_COMMAND

):
PLX Chip Support:

channel,
command

9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Controls the DMA engine for a given DMA channel.

Parameters:

pDevice

Pointer to an open device

channel

The number of the DMA channel to control

command

The action to perform on the DMA channel. Valid values are DmaStart, DmaPause, DmaResume, &

DmaAbort.

Return Codes:

Code

Description

ApiSuccess

The function returned successfully

ApiNullParam

One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not valid

ApiPowerDown

The PLX device is in a power state that is lower than required for this function

ApiDmaChannellnvalid

The DMA channel is not supported by this PLX chip

ApiDmaChannelUnavailable

The DMA channel has not been opened

ApiDmaNotPaused

If attempting to resume a DMA channel that is not in a paused state.

ApiDmaCommandinvalid

An invalid DMA command

5-29

Usage:

PLX_STATUS rc;
PLX_DMA_PARAMS DmaParams;

// Start a DMA transfer
PIxPci_DmaTransferBlock(

pDevice,
o, // Channel O
&DmaParams,
0 // Don’t wait for DMA completion
);
// Pause the DMA channel
rc =
PIxPci_DmaControl (
pDevice,
0, // Channel O
DmaPause // Pause the current transfer
)
if (rc = ApiSuccess)
{
// ERROR — Unable to pause DMA transfer
}
// Resume the DMA channel
rc =
PIxPci_DmaControl (
pDevice,
0, // Channel O
DmaResume // Resume the transfer
)

if (rc = ApiSuccess)

// ERROR — Unable to resume DMA transfer

5-30

PIxPci_DmaStatus

Syntax:

PLX_STATUS

PIxPci_DmaStatus(
PLX_DEVICE_OBJECT *pDevice,
us channel

):
PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Returns the status of the specified DMA channel.

Parameters:

pDevice
Pointer to an open device

channel
The number of the DMA channel to check status of

Return Codes:

Code Description
ApilnvalidDevicelnfo The device object is not valid
ApiDmaChannellnvalid The DMA channel is not supported by this PLX chip
ApiDmaChannelUnavailable The DMA channel has not been opened
ApiDmaDone The DMA channel is done/ready
ApiDmaPaused The DMA channel is paused
ApiDmalnProgress A DMA transfer is currently in-progress

5-31

Usage:

PLX_STATUS rc;
PLX_DMA_PARAMS DmaParams;

// Start a DMA transfer
PIxPci_DmaTransferBlock(

pDevice,
0, // Channel 0O
&DmaParams,
0 // Don’t wait for DMA completion
)
// Poll until DMA completes
do
{
rc =
PIxPci_DmaStatus(
pDevice,
0, // Channel 0O
)
while (rc == ApiDmalnProgress);

5-32

PIxPci_DmaTransferBlock

Syntax:

PLX_STATUS
PIxPci_DmaTransferBlock(
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PARAMS *pDmaParams,
ue4 Timeout_ms
)

PLX Chip Support:
9054, 9056, 9080*, 9656, 8311, & 8000 DMA

Description:

Starts a Block DMA transfer for a given DMA channel.

Parameters:

pDevice
Pointer to an open device

channel
The number of an open DMA channel to use for the transfer

pDmaParams
A pointer to a structure containing the DMA transfer parameters

Timeout_ms
Specifies the timeout, in milliseconds, for the function to wait for DMA completion.

If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.
To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT_INFINITE.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApiPowerDown The PLX device is in a power state that is lower than required for this function
ApiDmaChannellnvalid The DMA channel is not supported by the PLX chip
ApiDmaChannelUnavailable The DMA channel was not opened for Block DMA
ApiDmalnProgress A DMA transfer is currently in-progress
ApiWaitTimeout No interrupt was received to signal DMA completion
ApiUnsupportedFunction The device does not support DMA or 64-bit DMA is required but not supported (9080)

Notes:

Block DMA transfers are useful with contiguous host buffers described by a PCI address. The DMA channel
requires a valid PCI physical addresses, not user or virtual address. Virtual addresses are those returned by
malloc(), for example, or a static buffer in an application. The physical address of the Common buffer provided
by PLX drivers (refer to PIxPci_CommonBufferProperties), for example, is a valid DMA buffer.

5-33

By default, the DMA done interrupt is automatically enabled when this function is called. It may be disabled by
setting the bignoreBlockint field of PLX_DMA_ PARAMS. In this case, the DMA interrupt is disabled and will not
trigger the PLX driver's Interrupt Service Routine (ISR). This also means DMA done notification events
registered with PIxPci_NotificationRegisterFor will not signal when the DMA has completed.

The PLX_DMA PARAMS structure contains members whose meanings may differ or even be ignored
depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Signification
UserVa Ignored.
AddrSource (8000 DMA)
AddrDest (8000 DMA)
PciAddr (9000 DMA) The PCI address to transfer to/from. 64-bit is supported
LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer.
Direction Direction of the transfer. Refer to PLX DMA DIR
bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant
bForceFlush (8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.
| bignoreBlockint Will disable the DMA done interrupt. APl DMA done noatification will timeout in this case.
Usage:

PLX_DMA_PARAMS

DmaParams;

PLX_PHYSICAL_MEM PciBuffer;

// Get Common buffer information
PIxPci_CommonBufferProperties(

pDevice,

&PciBuffer

)
// Fill in DMA transfer parameters (9000 DMA)
DmaParams.PciAddr = PciBuffer.PhysicalAddr;
DmaParams.LocalAddr = 0x0;
DmaParams.TransferCount = 0x1000;

DmaParams.Direction

PLX_DMA_LOC_TO_PCI;

rc =
PIxPci_DmaTransferBlock(
pDevice,
0, // Channel 0O
&DmaParams, // DMA transfer parameters
(3 * 1000) // Specify time to wait for DMA completion
)

if (rc = ApiSuccess)

if (rc == ApiWaitTimeout)
// Timed out waiting for DMA completion

else

// ERROR - Unable to perform DMA transfer

5-34

PIxPci_DmaTransferUserBuffer

Syntax:

PLX_STATUS
PIxPci_DmaTransferUserBuffer(

PLX

PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PARAMS *pDmaParams,
ue4 Timeout_ms
)

Chip Support:

9054, 9056, 9080, 9656, 8311, & 8000 DMA

* On some versions of Windows (e.g. 2003 Server), the physical address of some user mode buffer pages may
require 64-bit addressing. If this is detected, the PLX driver will automatically use DMA dual-addressing to
access these pages. Dual-addressing is not supported on the PLX 9080 device; therefore, the API will return an

error

when 64-bit is required with this device.

Description:

Transfers a user-supplied buffer using the DMA channel. SGL mode of the DMA channel is used, but this is
transparent to the application. The function works as follows:

The PLX driver takes the provided user-mode buffer and page-locks it into memory.

The buffer is typically scattered throughout memory in non-contiguous pages. As a result, the driver
then determines the physical address of each page of memory of the buffer and creates an SGL
descriptor for each page. The descriptors are placed into an internal driver allocated buffer.

The DMA channel is programmed to start at the first descriptor.
After DMA transfer completion, an interrupt will occur and the driver will then perform all cleanup tasks.

Parameters:

pDevice

Pointer to an open device

channel

The number of an open DMA channel to use for the transfer

pDmaParams

A pointer to a structure containing the DMA transfer parameters

Timeout_ms

Specifies the timeout, in milliseconds, for the function to wait for DMA completion.
If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.

To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT _INFINITE.

5-35

Return Codes:

Code

Description

ApiSuccess

The function returned successfully

ApiNullParam

One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not valid

ApiPowerDown

The PLX device is in a power state that is lower than required for this function

ApiDmaChannellnvalid

The DMA channel is not supported by the PLX chip

ApiDmaChannelUnavailable

The DMA channel has not been opened for SGL DMA

ApiDmalnProgress

The DMA transfer is currently in-progress

ApiWaitTimeout

No interrupt was received to signal DMA completion

ApiDmaSglPagesGetError

The driver was unable to obtain the page list for the user- mode buffer

ApiDmaSglPagesLockError

The driver was unable to page lock the user-mode buffer

ApilnsufficientResources

The driver was unable to allocate an internal buffer to store SGL descriptors

Notes:

The driver will always enable the DMA channel interrupt when this function is used. This is required so the
driver can perform cleanup routines, such as unlock the buffer and release descriptors, after the transfer has

completed.

The PLX_DMA PARAMS structure contains members whose meanings may differ or even be ignored

depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Signification
UserVa Virtual address of the user-mode buffer to transfer
AddrSource (8000 DMA) Source PCI address if Direction is PLX_DMA_PCI_TO_USER
AddrDest (8000 DMA) Destination PCI address if Direction is PLX_DMA_USER_TO_PCI
PciAddr Ignored
LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer
Direction Direction of the transfer. Refer to PLX DMA DIR
bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant
bForceFlush (8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.
blgnoreBlockint Ignored. PLX driver always enables DMA done interrupt to cleanup SGL

5-36

Usage:

us *pBuffer;
PLX_DMA_PARAMS DmaParams;

// Allocate a 500k buffer
pBuffer = malloc(500 * 1024);

// Clear DMA parameters
memset(DmaParams, 0, sizeof(PLX_DMA PARAMS));

// Setup DMA parameters (9000 DMA)
DmaParams.UserVa (PLX_UINT_PTR)pBuffer;
DmaParams.LocalAddr = 0xO0;
DmaParams.ByteCount (500 * 1024);
DmaParams.Direction PLX DMA LOC TO PCI;

rc =
PIxPci_DmaTransferUserBuffer(
pDevice,
o, // Channel 0
&DmaParams, // DMA transfer parameters
(3 * 1000) // Specify time to wait for DMA completion
)

if (rc = ApiSuccess)

if (rc == ApiWaitTimeout)

// Timed out waiting for DMA completion
else

// ERROR - Unable to perform DMA transfer

5-37

PIxPci_DriverProperties

Syntax:

PLX_STATUS

PIxPci_DriverProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_DRIVER_PROP *pDriverProp

):
PLX Chip Support:

All devices

Description:
Returns properties of the PLX driver in use for the selected device

Parameters:

pDevice
Pointer to an open device

pDriverProp
A pointer to PLX_DRIVER_PROP structure that will contain the driver properties

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid

5-38

Usage:

PLX_STATUS rc;
PLX_DRIVER_PROP DriverProp;
PLX_DEVICE_OBJECT Device;

// Determine if Service or PnP driver in use

rc =
PIxPci_DriverProperties(
&Device,
&DriverProp
):
if (rc == ApiSuccess)
{
Cons_printf(
“Driver Name: %s\n”,
DriverProp.DriverName
):
if (DriverProp.blsServiceDriver)
{
Cons_printf(“Using PLX Service driver\n”,);
}
else
{
Cons_printf(*“Using PLX PnP driver\n”,);
}
Cons_printf(
“PCle Located at Ox%gX\n”,
DriverProp.AcpiPcieEcam
)
}

5-39

PIxPci_DriverScheduleRescan

Syntax:

PLX_STATUS
PIxPci_DriverScheduleRescan(
PLX_DEVICE_OBJECT *pDevice

):
Note: This function has not yet been implemented in the PLX SDK. This documentation is left here for a
future SDK version when it is implemented. This function and its parameters are subject to change.

PLX Chip Support:

Any device when selected via the PLX PCI/PCle Service driver

Description:

Makes a request to the PLX PCI Service driver to rescan the PCI/PCle bus and rebuild its internal device list.
Since the Service driver is not informed of Plug ‘n’ Play events (e.g. device additional/removal or resource
changes), its internal list of detected devices could contain erroneous information.

Once the driver receives the request, it will perform the operation when all connections to it have been closed.

Parameters:

pDevice
Pointer to an open device

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid
ApiUnsupportedFunction The function was called with a device that is not accessed via the Service driver

Usage:
PLX_STATUS status;

// Inform the service driver to rebuild its internal list

status =
PIxPci_DriverScheduleRescan(
pDevice
)

// Close device to allow driver to rescan
PIxPci_DeviceClose(
pDevice

)

5-40

PIxPci_DriverVersion

Syntax:

PLX_STATUS

PIxPci_DriverVersion(
PLX_DEVICE_OBJECT *pDevice,
us *pVersionMajor,
us *pVersionMinor,
us *pVersionRevision

):
PLX Chip Support:

All devices

Description:

Returns the PLX driver version information

Parameters:

pDevice
Pointer to an open device

pVersionMajor

A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor

A pointer to an 8-bit buffer to contain the Minor version number

pVersionRevision

A pointer to an 8-hit buffer to contain the Revision version number

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid

5-41

Usage:

5-42

us DriverMajor;
us DriverMinor;
us DriverRevision;

PLX_STATUS rc;

rc =
PIxPci_DriverVersion(
pDevice,
&DriverMajor,
&DriverMinor,
&DriverRevision

)
if (rc = ApiSuccess)

// ERROR — Unable to get Driver version information

}

else

{ _

Cons_printf(

"PLX Driver Version = %d.%d%d\n",
DriverMajor, DriverMinor, DriverRevision
)

}

PIxPci_EepromPresent

Syntax:

PLX_EEPROM_STATUS

PIxPci_EepromPresent(
PLX_DEVICE_OBJECT *pDevice

PLX_STATUS
)

PLX Chip Support:
All PLX devices

Description:

*pStatus

Returns the state of the EEPROM as reported by the PLX device.

Parameters:

pDevice

Pointer to an open device

pStatus

Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:

If the function is successful, it will return a PLX_EEPROM_STATUS code.
If the PLX_STATUS variable is not NULL, one of the following values is returned:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

EEPROM access to device is not supported

Notes:

The EEPROM status is read directly from the PLX status register. The status is generally only valid at the time

of power up or after a reset.

The status may not reflect the true status of the EEPROM after reset.

Modifications of EEPROM values, including the CRC, are not reflected in the chip’s EEPROM status until the
next reset when the EEPROM contents are loaded.

5-43

Usage:

5-44

PLX_STATUS rc;
PLX_EEPROM_STATUS EepStatus;

// Check if EEPROM present
EepStatus =
PIxPci_EepromPresent(
pDevice,
&rc

);

if (rc == ApiSuccess)
{
switch (EepStatus)
{
case PLX EEPROM_STATUS NONE:
// No EEPROM Present
break;

case PLX_EEPROM_STATUS VALID:
// EEPROM present with valid data
break;

case PLX _EEPROM_STATUS_ INVALID_DATA:

case PLX_EEPROM_STATUS BLANK:

case PLX EEPROM_STATUS CRC_ERROR:
// Present but invalid data, CRC error, or
break;

blank

PIxPci_EepromProbe

Syntax:

BOOLEAN

PIxPci_EepromProbe (
PLX_DEVICE_OBJECT *pDevice
PLX_STATUS *pStatus

)

PLX Chip Support:
All PLX devices

Description:

Manually probes for the presence of an EEPROM. The API does this by writing to a specific EEPROM location

and then reading it back to verify the write operation.

Parameters:

pDevice
Pointer to an open device

pStatus

Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands

ApiUnsupportedFunction

EEPROM access to device is not supported

Usage:

BOOLEAN bEepromPresent;
PLX_STATUS rc;

bEepromPresent =
PIxPci_EepromProbe (
pDevice,
&rc

E
if (rc == ApiSuccess)

if (bEepromPresent)

// Programmed EEPROM exists
else

// EEPROM does not exist

5-45

PIxPci_EepromCrcGet

Syntax:

BOOLEAN
PIxPci_EepromCrcGet(
PLX_DEVICE_OBJECT *pDevice,

us2 *pCrc,
us *pCrcStatuse
)

PLX Chip Support:
All PLX 8000 devices with an EEPROM CRC feature

Description:

Reads the current CRC value from the EEPROM. The status of the CRC as reported by the PLX chip is
returned.

Parameters:

pDevice
Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the current CRC

pCrcStatus
Pointer to an 8-bit buffer to store the CRC status as reported by the PLX chip. The status code will be
PLX_CRC_VALID or PLX_CRC_INVALID.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands
ApiUnsupportedFunction EEPROM access to device is not supported

Notes:

Note that the CRC status is simply the status as reported by the PLX chip. This status may not be consistent
with the EEPROM CRC if the EEPROM has been updated. The status of the CRC in the PLX chip is updated
only upon power up when the PLX chip loads values from the EEPROM.

5-46

Usage:

U8 CrcStatus;
U32 Crc;

// Get current EEPROM CRC
PIxPci_EepromCrcGet(
pDevice,
&Crc,
&CrcStatus

);

Cons_printf(
"CRC=%08x Status=%s)\n",
Crc,
(CrcStatus == PLX_CRC_VALID) ? "Valid"™ : "Invalid"

)

5-47

PIxPci_EepromCrcUpdate

Syntax:

BOOLEAN
PIxPci_EepromCrcUpdate(
PLX_DEVICE_OBJECT *pDevice,

us2 *pCrc,
BOOLEAN bUpdateEeprom
)

PLX Chip Support:
All PLX 8000 devices with a CRC feature

Description:

Reads the current EEPROM contents and calculates an updated CRC. If requested, this function can update
the CRC stored in the EEPROM.

Parameters:

pDevice
Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the newly calculated CRC

bUpdateEeprom
If TRUE, the function will update the CRC in the EEPROM. If FALSE, it will not modify the EEPROM

contents.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands
ApiUnsupportedFunction EEPROM access to device is not supported

5-48

Usage:

ug CrcStatus;
u32 Crc;
u32 CrcNew;

// Get current EEPROM CRC
PIxPci_EepromCrcGet(
pDevice,
&Crc,
&CrcStatus

);

// Calculate new CRC
PIxPci_EepromCrcUpdate(

pDevice,
&CrcNew,
FALSE // Don"t update EEPROM
)
if (Crc == CrcNew)
{
Cons_printF("'CRC in EEPROM is valid\n™);
}
else
{ _ _ _
Cons_printf("'CRCs do not match, CRC in EEPROM not valid\n');
// Calculate new CRC
PIxPci_EepromCrcUpdate(
pDevice,
&CrcNew,
TRUE // Update CRC in EEPROM
)
Cons_printf(*'Updated CRC in EEPROM to valid value\n');
}

5-49

PIxPci_EepromSetAddressWidth

Syntax:

PLX_STATUS

PIxPci_EepromSetAddressWidth(
PLX_DEVICE_OBJECT *pDevice
us width

)
PLX Chip Support:
8111, 8112, & 8000 devices that support EEPROM address width override

Description:
Sets the EEPROM addressing width

Parameters:

pDevice
Pointer to an open device

width
The byte addressing to be used for EEPROM accesses. Width must by 1, 2, or 3.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiUnsupportedFunction Device does not support EEPROM address width override
ApilnvalidData The EEPROM width is not valid

Notes:

Note that this setting only remains persistent as long as the PLX driver is loaded. If it is unloaded or the system
is restarted, this API call must be called again.

5-50

Usage:

u32 Value;
PLX_STATUS rc;

// Get EEPROM width from device

Value =
PIxPci_PIxRegisterRead(
pDevice,
0x1004, // EEPROM Control register
&rc
)

// Get EEPROM address width field (bits 23 & 24)
Value = (Value >> 23) & 0x3;

it (Value == 0)

{
// EEPROM width not detected, set it manually
PIxPci_EepromSetAddressWidth(
pDevice,
2 // Use 2-byte addressing
}:
}

// EEPROM can now be properly accessed
PIxPci_EepromReadByOffset(

pDevice,

0x10,

&Value;

);

5-51

PIxPci_EepromReadByOffset

Syntax:

PLX_STATUS
PIxPci_EepromReadByOffset(
PLX_DEVICE_OBJECT *pDevice

ulie offset,
us2 *pValue
);

PLX Chip Support:
All PLX devices

Description:
Reads a 32-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:

pDevice
Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 32-bit boundary)

pValue
Pointer to a 32-bit buffer to contain the EEPROM value

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiUnsupportedFunction EEPROM access to device is not supported
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands
ApilnvalidOffset Offset not aligned on 32-bit boundary
Usage:

u32 EepromData;

PLX_STATUS status;

// Read the Subsystem Device 1D of the 9054

status =
PIxPci_EepromReadByOffset(
pDevice,
0x44, // Subsystem Device ID EEPROM offset
&EepromData
)

if (status != ApiSuccess)
// ERROR — Unable to read EEPROM

5-52

PIxPci_EepromWriteByOffset

Syntax:
PLX_STATUS

PIxPci_EepromWriteByOffset(
PLX_DEVICE_OBJECT *pDevice

ul6
u32

)

PLX Chip Support:

All PLX devices

Description:

offset,
value

Writes a 32-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:

pDevice

Pointer to an open device

offset

The EEPROM offset of the location to write. (Must be aligned on a 32-bit boundary)

value

The 32-bit value to write

Return Codes

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

EEPROM access to device is not supported

ApiWaitTimeout

The PLX EEPROM controller is busy and not accepting new commands

ApilnvalidOffset

Offset not aligned on 32-bit boundary

Usage:

PLX_STATUS status;

// Write to the Subsystem Device ID of the 9054

status =

PIxPci_EepromWriteByOffset(

pDevice,
0x44,

// Subsystem Device ID EEPROM offset

0x524510B5

)

if (status !'= ApiSuccess)
// ERROR — Unable to write to EEPROM

5-53

PIxPci_EepromReadByOffset 16

Syntax:

PLX_STATUS
PIxPci_EepromReadByOffset 16(
PLX_DEVICE_OBJECT *pDevice

ulie offset,
uie *pValue
);

PLX Chip Support:
All PLX devices

Description:
Reads a 16-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:

pDevice
Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 16-bit boundary)

pValue
Pointer to a 16-bit buffer to contain the EEPROM value

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiUnsupportedFunction EEPROM access to device is not supported
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands
ApilnvalidOffset Offset not aligned on 16-bit boundary
Usage:

ul6 EepromData;

PLX_STATUS status;

// Read the Subsystem Device ID of the 6540

status =
PIxPci_EepromReadByOffset 16(
pDevice,
0x26, // Subsystem Device ID EEPROM offset
&EepromData
)

if (status != ApiSuccess)
// ERROR — Unable to read EEPROM

5-54

PIxPci_EepromWriteByOffset 16

Syntax:
PLX_STATUS

PIxPci_EepromWriteByOffset 16(
PLX_DEVICE_OBJECT *pDevice

ulie offset,
ule value
)

PLX Chip Support:
All PLX devices

Description:

Writes a 16-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:

pDevice
Pointer to an open device

offset

The EEPROM offset of the location to write. (Must be aligned on a 16-bit boundary)

value
The 16-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiUnsupportedFunction EEPROM access to device is not supported
ApiWaitTimeout The PLX EEPROM controller is busy and not accepting new commands
ApilnvalidOffset Offset not aligned on 16-bit boundary

Usage:
PLX_STATUS status;

// Write to the Subsystem Device ID of the 9054

// Subsystem Device ID EEPROM offset

status =
PIxPci_EepromWriteByOffset 16(
pDevice,
0x44,
0x5245
)

if (status !'= ApiSuccess)

// ERROR — Unable to write to EEPROM

5-55

PIxPci_GetPortProperties

Syntax:

PLX_STATUS

PIxPci_GetPortProperties(
PLX_DEVICE_OBJECT *pDevice
PLX_PORT_PROP *pPortProp

):
PLX Chip Support:

All devices

Description:
Returns properties of the PLX driver in use for the selected device

Parameters:

pDevice
Pointer to an open device

pPortProp
A pointer to PLX_PORT_PROP structure that will contain the port properties

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not valid

Usage:
PLX_PORT_PROP PortProp;

PIxPci_GetPortProperties(
pDevice,
&PortProp

)
Cons_printF(""Port Type : %02d ', PortProp.PortType);

switch (PortProp.PortType)

{
case PLX_PORT_ENDPOINT: // PLX_PORT_NON_TRANS

Cons_printF(""(Endpoint or NT port)\n');
break;

case PLX PORT_UPSTREAM:
Cons_printf(""(Upstream)\n'");
break;

case PLX_PORT_DOWNSTREAM:

5-56

Cons_printf(""(Downstream)\n');
break;

case PLX_PORT_LEGACY_ENDPOINT:
Cons_printf(*"(Endpoint)\n');
break;

case PLX_PORT_ROOT_PORT:
Cons_printf("*(Root Port)\n™);
break;

case PLX_PORT_PCIE_TO_PCI_BRIDGE:
Cons_printf("'(PCle-to-PCl Bridge)\n™);
break;

case PLX_PORT_PCI_TO_PCIE_BRIDGE:
Cons_printf(""(PCI-to-PCle Bridge)\n™);
break;

case PLX PORT_ROOT_ENDPOINT:
Cons_printf(""(Root Complex Endpoint)\n');
break;

case PLX_PORT_ROOT_EVENT_COLL:
Cons_printf("'(Root Complex Event Collector)\n'™);
break;

case PLX_PORT_UNKNOWN:

default:
Cons_printf(*"(Unknown?)\n"");
break;

}

Cons_printf("'Port Number: %02d\n*, PortProp.PortNumber);
Cons_printf("'Max Payload: %02d\n', PortProp.MaxPayloadSize);
Cons_printf("'Link Width : %d\n", PortProp.LinkWidth);

5-57

PIxPci_Getl2cPorts

Syntax:

PLX_STATUS

PIxPci_Getl2cPorts(
PLX_API_MODE ApiMode,
u32 *pl2cPorts

):
PLX Chip Support:

All devices

Description:
Returns the I°C ports detected in the system and their availability.

Parameters:

ApiMode
Specifies the PLX_API_MODE to use. At this time, only PLX_API_MODE_I2C_AARDVARK is supported.

pl2cPorts
A 32-bit value containing information about the 1°C ports in the system. Bits [15:0] denote whether the
specific port is in the system and bits [31:16] denote whether the port is in-use.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidAccessType The ApiMode parameter is hot PLX_API_MODE_I2C_AARDVARK
ApiNoActiveDriver The Aardvark USB device does not exist or driver is not installed

5-58

Usage:

us i;
u32 12cPorts;
PLX_STATUS status;

// Get available 12C ports
status =
PIxPci_Getl2cPorts(
PLX_API_MODE_12C_AARDVARK,
&l2cPorts

)
if ((status != ApiSuccess) || (12cPorts == 0))

// No 12C ports detected

}
else
// Parse through active ports
for (i = 0; i < 16; i++)
{
// Check if port is active
if (12cPorts & (1 << 1))
{
// Port exists In the system
// Check if port is in-use
if ((12cPorts >> 16) & (1 << 1))
// Port is in use by another application
}
}
}
}

5-59

PIxPci_l2cVersion

Syntax:
PLX_STATUS

PIxPci_l2cVersion (
12cPort,

ui6

PLX_VERSION *pVersion

)

PLX Chip Support:

All devices

Description:

Returns the version information for a specific I’c port.

Parameters:
12cPort

Specifies the I°C port.

pVersion

A pointer to a.PLX_VERSION structure that will contain version information.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidAccessType

The ApiMode parameter is hot PLX_API_MODE_I2C_AARDVARK

ApiNoActiveDriver

The Aardvark USB device does not exist or driver is not installed

5-60

Usage:

PLX_STATUS status;
PLX_VERSION I2cVersion;

// Get 12C version

status =
PIxPci_l12cVersion(
o, // 12C USB device
&l2cVersion
);

if (status !'= ApiSuccess)

// Error — Unable to get 12C version information

}

else
{
Cons_printf(

“12C Version Info:\n”
“ API:v%01d.%02d SW:v%01d.%02d FW:v%01d.%02d HW:v%01d.%02d\n"’,
(12c.ApiLibrary >> 8), 12c.ApiLibrary & OxFF,
(12c.Software >> 8), l2c.Software & OxFF,
(12c.Firmware >> 8), l2c.Firmware & OxFF,
(12c.Hardware >> 8), l2c.Hardware & OxFF,

// Verify required versions
if (12c.SwRegByFw < 12c.Software)

Cons_printf(“Error: 12C SW ver is not compatible with FW version\n™);

if (12c.FwRegBySw < 12c.Firmware)

Cons_printf(“Error: 12C FW ver is not compatible with SW version\n™);

if (12c.ApiRegBySw < 12c.ApiLibrary)

Cons_printf(“Error: 12C APl ver is not compatible with SW version\n™);

5-61

PIxPci_loPortRead

Syntax:

PLX_STATUS
PIxPci_loPortRead(

PLX_DEVICE_OBJECT *pDevice

u64

VOID

u32
PLX_ACCESS_TYPE

)
PLX Chip Support:

All devices

Description:

port,
*pBuffer,

ByteCount,

AccessType

Reads one or more values from an I/O port.

Parameters:

pDevice
Pointer to an open de

port

vice

The 1/O port address to read from. Must be a multiple of the AccessType.

pBuffer

A pointer to a buffer that will contain the data read from the 1/0O port

ByteCount

The number of bytes to read from the 1/O port. Must be a multiple of the AccessType.

AccessType

Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL

ApilnvalidAddress

The I/O port is not aligned on a boundary that is a multiple of the AccessType.

ApilnvalidAccessType

An invalid or unsupported PLX_ACCESS_TYPE parameter

ApilnvalidSize

The region to access is not a valid I/O port or the 1/O port is not aligned on a boundary
that is a multiple of the AccessType.

5-62

Usage:

us MyBuffer[0x100];
PLX_STATUS rc;

// Read from an 1/0 port

rc =
PIxPci_loPortRead(

pDevice,
200h, // Specify 1/0 port base
&MyBuffer, // Buffer to place data into
0x100, // Number of bytes to read
BitSize8 // Perform 8-bit reads
)

if (rc = ApiSuccess)

// ERROR - Unable to read from 1/0 port

5-63

PIxPci_loPortWrite

Syntax:

PLX_STATUS
PIxPci_loPortWrite(

PLX_DEVICE_OBJECT *pDevice

u64

VOID

u32
PLX_ACCESS_TYPE

)
PLX Chip Support:

All devices

Description:

port,
*pBuffer,

ByteCount,

AccessType

Writes one or more values to an 1/O port.

Parameters:

pDevice

Pointer to an open device

port

The 1/O port address to write to. Must be aligned on an AccessType boundary.

pBuffer

A pointer to a buffer that contains the data to write to the 1/0O port

ByteCount

The number of bytes to write to the 1/0 port. Must be a multiple of the AccessType.

AccessType

Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL

ApilnvalidAddress

The I/O port is not aligned on a boundary that is a multiple of the AccessType.

ApilnvalidAccessType

An invalid or unsupported PLX_ACCESS_TYPE parameter

ApilnvalidSize

The region to access is not a valid I/O port or the 1/O port is not aligned on a boundary
that is a multiple of the AccessType.

5-64

Usage:

us MyBuffer[0x100];
PLX_STATUS rc;

// Read from an 1/0 port

rc =
PIxPci_loPortWrite(

pDevice,
200h, // Specify 1/0 port base
&MyBuffer, // Buffer that contains write data
0x100, // Number of bytes to write
BitSizel6 // Perform 16-bit writes
)

if (rc = ApiSuccess)

// ERROR - Unable to write to 1/0 port
}

5-65

PIxPci_InterruptDisable

Syntax:

PLX_STATUS

PIxPci_InterruptDisable(
PLX_DEVICE_OBJECT *pDevice
PLX_INTERRUPT *pPIxIntr

):
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Disables PLX-specific interrupt(s)

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to the interrupt structure specifying the interrupts to disable

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiPowerDown The PLX device is in a power state that is lower than required for this function
Usage:

PLX_STATUS rc;
PLX_INTERRUPT PIxIntr;

// Clear interrupt structure
memset(&PIxIntr, 0, sizeof(PLX_INTERRUPT));

// Set interrupts to disable
PIxIntr.LocalToPci_1 1; // Generic Local-to-PCl int (LINT#)
PIxIntr.DmaChannel 0O 1; // PCI DMA Channel O

rc =

PIxPci_InterruptDisable(
pDevice,
&PIXIntr

)

if (rc = ApiSuccess)
// ERROR - Unable to disable interrupts

5-66

PIxPci_InterruptEnable

Syntax:

PLX_STATUS

PIxPci_InterruptEnable(
PLX_DEVICE_OBJECT *pDevice
PLX_INTERRUPT *pPIxIntr

):
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Enables PLX-specific interrupt(s)

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to the interrupt structure specifying the interrupts to enable

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiPowerDown The PLX device is in a power state that is lower than required for this function
Usage:

PLX_STATUS rc;
PLX_INTERRUPT PIxIntr;

// Clear interrupt structure
memset(&PIxIntr, 0, sizeof(PLX_INTERRUPT));

// Set interrupts to enable
PIxIntr.LocalToPci_1 1; // Generic Local-to-PCl int (LINT#)
PIxIntr.DmaChannel 0O 1; // PCI DMA Channel O

rc =

PIxPci_InterruptEnable(
pDevice,
&PIXIntr

)

if (rc = ApiSuccess)
// ERROR - Unable to enable interrupts

5-67

PIxPci_MailboxRead

Syntax:

u32
PIxPci_Mai lboxRead(

PLX_DEVICE_OBJECT *pDevice

u16
PLX_STATUS

)
PLX Chip Support:

mai lbox,
*pStatus

All PLX 9000 devices, 8311, & 8000 NT

Description:

Returns the value of the specified mailbox/scratchpad register.

Parameters:

pDevice

Pointer to an open device

mailbox

The specified mailbox to read

pStatus

Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

The function is not supported by the driver/device

Apilnvalidindex

The specified mailbox is invalid for the selected device

Usage:
U32 MB Value;

// Read MB
MB_Value =

PIxPci_MailboxRead(

pDevice,
4,

NULL

);

5-68

// Mailbox 4

PIxPci_MailboxWrite

Syntax:
PLX_STATUS

PIxPci_MailboxWrite(
PLX_DEVICE_OBJECT *pDevice

ul6
u32

E
PLX Chip Support:

mai lbox,
value

All PLX 9000 devices, 8311, & 8000 NT

Description:

Writes a value to the specified mailbox/scratchpad register.

Parameters:

pDevice

Pointer to an open device

mailbox

The specified mailbox to write

value

The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

The function is not supported by the driver/device

Apilnvalidindex

The specified mailbox is invalid for the selected device

Usage:
#define MSG_READY

0x1234ABCD

// Post ready to other side
PIxPci_MailboxWrite(

pDevice,
41
MSG_READY
)

// Mailbox 4

5-69

PIxPci_MH_GetProperties

Syntax:
PLX_STATUS

PIxPci_MH_GetProperties(
PLX_DEVICE_OBJECT *pDevice
PLX_MULTI_HOST_PROP *pMHProp

):
PLX Chip Support:

PLX 8000 virtual switches that support multi-host feature

Description:

Returns the current properties of a PLX switch capable of supporting multi-host.

Parameters:

pDevice

Pointer to an open device

pMHProp

A pointer to a PLX_MULTI_HOST_PROP structure that will contain the device’s properties.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

Selected device does not support multi-host capabilities or device is not the
management port in Virtual Switch mode

5-70

Usage:

PLX_STATUS rc;
PLX_MULTI_HOST_PROP MHProp;

// Query MH switch properties
rc =
PIxPci_MH_GetProperties(
pDevice,
&MHProp

);

if (rc = ApiSuccess)
// Error — Unable to obtain MH switch properties
else
{
// Display properties
if (MHProp.SwitchMode == PLX_SWITCH_MODE_STANDARD)
Cons_printf(“Switch is in standard single-host mode\n™);

it (MHProp.SwitchMode == PLX_SWITCH_MODE_MULTI_HOST)

{
if (MHProp.blsMgmtPort == FALSE)

// Device properties only available through mgmt port
Cons_printf(
“Switch mode is multi-host but port not management\n

)

}

else
{
Cons_printf(

“Properties:\n”
“ Mode : Multi-host\n”
“ Curr Mgmt Port o %d (Wws)\n”
“ Backup Mgmt Port > %d (%s)\n”
“ Active VS port mask: %08X\n”,
MHProp .MgmtPortNumActive,
(MHProp.bMgmtPortActiveEn) ? “Enabled” : “Disabled”,
MHProp .MgmtPortNumRedundant,
(MHProp.bMgmtPortRedundantkEn) ? “Enabled” : “Disabled”,
MHProp.VS_EnabledMask

)

5-71

PIxPci_MH_MigratePorts

Syntax:

PLX_STATUS
PIxPci_MH_MigratePorts(
PLX_DEVICE_OBJECT *pDevice,

ule VS_Source,
ule VS_Dest,
u32 DsPortMask,
BOOLEAN bResetSrc
);

PLX Chip Support:
PLX 8000 virtual switches that support multi-host feature

Description:

Migrates one or more downstream ports from one virtual switch host to another.

Parameters:

pDevice
Pointer to an open device

VS_Source
The virtual host to remove downstream port(s) from.

VS _Dest
The virtual host that will be assigned the downstream port(s).

DsPortMask
A mask of the downstream port(s) to move. Each bit position corresponds to a port number. One or more
ports may be specified but must be downstream type.

bResetSrc
Flag to specify whether to reset the source virtual switch.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
. . Selected device does not support multi-host capabilities or device is not the
ApiunsupportedFunction management port in Virtual Switch mode

5-72

Usage:
// Move ports 2 & 5 from VS1 to VS4

status =
PIxPci_MH_MigratePorts(

pDevice,
1, // Source port
4, // Destination port
(1 <5 | (1<<2, // DS ports 2 & 5
FALSE // Do not reset source port
)

if (status == ApiSuccess)
// Moved ports
else
// Error — Unable to move port

5-73

PIxPci_NotificationCancel

Syntax:

PLX_STATUS

PIxPci_NotificationCancel (
PLX_DEVICE_OBJECT *pDevice
PLX_NOTIFY_OBJECT *pEvent

):
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Cancels a notification object previously registered with PIxPci_NotificationRegisterFor.

Parameters:

pDevice
Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

Return Codes:

Code Description

ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidHandle The PLX driver was unable to reference the event handle
ApilnsufficientResources Insufficient resources to create the naotification object
ApiFailed The notification object is not valid or not registered
Usage:

PLX_INTERRUPT IntSources;

PLX_STATUS rc;

PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

5-74

// Register for interrupt notification
IntSources.Doorbell (1 << 16) | OxF; // Doorbells 16, & 0-3

IntSources.Message O = 1;
IntSources.ResetDeassert = 1;
IntSources.PmeDeassert = 1;
IntSources.GPIO_4 5 =1;
IntSources.GPI0_14 15 =1;
rc =
PIxPci_NotificationRegisterFor(

pDevice,

&IntSources,

&Event

);

if (rc = ApiSuccess)

// ERROR — Unable to register interrupt notification

}
// Wait for the interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout
)
switch (rc)
{
case ApiSuccess:
// Interrupt occurred
break;
case ApiWaitTimeout:
// ERROR - Timeout waiting for Interrupt Event
break;
case ApiWaitCanceled:
// ERROR — Event not registered for wait
break;
}
// Cancel interrupt notification
rc =
PIxPci_NotificationCancel (
pDevice,
&Event
):

if (rc = ApiSuccess)

// ERROR — Unable to cancel interrupt notification

5-75

PIxPci_NotificationRegisterFor

Syntax:

PLX_STATUS
PIxPci_NotificationRegisterFor(
PLX_DEVICE_OBJECT *pDevice

PLX_INTERRUPT *pPIxIntr,
PLX_NOTIFY_OBJECT *pEvent
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Registers a notification object with the PLX driver for the specified interrupt(s). It is used in conjunction with
PIxPci_NotificationWait.

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to a structure containing the sources of interrupts that the application would like to be notified of.
An event will occur if ANY one of the registered interrupts occurs.

pEvent
A pointer to a PLX notification object that can be used with PIxPci_NotificationWait.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL
ApilnsufficientResources Not enough memory to allocate a new event handle

Notes:

This function does not actually enable interrupt(s). It only registers for interrupt notification with the PLX driver.
To enable an interrupt(s), refer to PIxPci_InterruptEnable.

Once the registration is complete, the event will continue to signal until it is cancelled. There is no need to
continuously re-register for notification.

WARNING: For users porting applications written with PCI SDK 4.2 or older, note that you only need to call this
function one time for each interrupt registration. In SDK 4.2 and older, the PIxintrAttach API call required
constant re-registration. This limitation no longer applies starting with SDK 4.3. If you continuously call
PIxPci_NotificationRegisterFor, the registrations will remain persistent in an internal PLX driver list and consume
system resources, possibly resulting in an unstable system.

5-76

Usage:

PLX_STATUS rc;
PLX_INTERRUPT IntSources;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

// Register for doorbell interrupts 1, 3, & 24
IntSources.Doorbell = (1 << 24) | (1 << 3) | (1 << 1);

// Also register for DMA channel 1
IntSources.DmaChannel _1;

rc =
PIxPci_NotificationRegisterFor(
pDevice,
&IntSources,
&Event

)
if (rc = ApiSuccess)

// ERROR — Unable to register interrupt notification

3
// Wait for interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
PLX_TIMEOUT INFINITE // Wait forever
)

switch (rc)

case ApiSuccess:
// Interrupt triggered
break;

case ApiWaitTimeout:
// ERROR - Timeout waiting for interrupts
break;

case ApiWaitCanceled:

case ApiFailed:

default:
// ERROR - Failed while waiting for interrupt
break;

5-77

PIxPci_NotificationStatus

Syntax:

PLX_STATUS

PIxPci_NotificationStatus(
PLX_DEVICE_OBJECT *pDevice
PLX_NOTIFY_OBJECT *pEvent,
PLX_INTERRUPT *pPIXIntr

):
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Returns which interrupt(s) caused the provided notification event to trigger.

Parameters:

pDevice
Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

pPIxIntr
A pointer to a PLX_INTERRUPT structure that will contain all triggered interrupts that caused the
notification event to become signaled.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL
ApilnsufficientResources Not enough memory to allocate a new event handle

Notes:

This function will set the flag for all interrupts that have caused a notification event since the last query. In other
words, if two different interrupts occurred, the status will indicate two different interrupts. There is no way to
determine if the same interrupt triggered multiple times since the last query.

5-78

Usage:

PLX_INTERRUPT IntSources;
PLX_STATUS rc;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

// Wait for interrupt on previously registered event
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout

)
if (rc = ApiSuccess)

// ERROR — Interrupt wait failed

}
// Determine which interrupt occurred
rc =
PIxPci_NotificationStatus(
pDevice,
&NotifyObject,
&IntSources
):
if (rc == ApiSuccess)
{
Cons_printfF(""Triggered interrupt(s):');
if (IntSources.Doorbell)
Cons_Printf("" <Doorbell>");
if (IntSources.DmaChannel_0)
Cons_Printf("" <DMA 0>");
if (IntSources.GPIO_14 15)
Cons_Printf("" <GPI0O_14 15>");
if (IntSources.LocalToPci_1)
Cons_Printf(" <L-to-P 1>");
Cons_Printf(*'\n"");
}

5-79

PIxPci_NotificationWait

Syntax:

PLX_STATUS
PIxPci_NotificationWait(
PLX_DEVICE_OBJECT *pDevice
PLX_NOTIFY_OBJECT *pEvent
ue4 Timeout_ms;

E
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Wait for a specific interrupt(s) associated with a PLX notification object to occur or until the timeout is reached.

Parameters:

pDevice
Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

Timeout_ms
The desired time to wait, in milliseconds, for the event to occur. To wait forever, use the pre-defined value
PLX TIMEOUT_INFINITE.

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiFailed The notification object is not valid or not registered
ApiWaitTimeout Reached timeout waiting for event
ApiWaitCanceled Wait event was cancelled

5-80

Usage:

PLX_STATUS rc;
PLX_INTERRUPT IntSources;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

// Register for interrupt notification
IntSources.DmaChannel 0 = 1;

rc =
PIxPci_NotificationRegisterFor(
pDevice,
&IntSources,
&Event

)
if (rc = ApiSuccess)

// ERROR — Unable to register interrupt notification

}
// Wait for the interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout
);

switch (rc)

case ApiSuccess:
// Interrupt occurred
break;

case ApiWaitTimeout:
// ERROR - Timeout waiting for Interrupt Event
break;

case ApiWaitCanceled:

// ERROR — Event not registered for wait
break;

5-81

PIxPci_PciBarSpaceRead

Syntax:

PLX_STATUS
PIxPci_PciBarSpaceRead(
PLX_DEVICE_OBJECT *pDevice

us BarlIndex,

u32 offset,

VOID *pBuffer,

u32 ByteCount,
PLX_ACCESS_TYPE AccessType,
BOOLEAN bOffsetAslLocalAddr
)

PLX Chip Support:
All 9000 series & 8311

Description:

Reads from the specified PCI BAR space of a PLX chip (sometimes referred to as Direct Slave Read).

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that will contain the retrieved data. This buffer must be large enough to
hold the amount of data requested.

ByteCount
The number of bytes to read. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-82

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidHandle The function was passed an invalid device handle
ApiNullParam One or more parameters is NULL
ApiPowerDown The PLX device is in a power state that is lower than required for this function
ApilnsufficientResources | The API was unable to communicate with the driver due to insufficient resources
ApilnvalidAccessType An invalid or unsupported PLX_ACCESS_TYPE parameter
ApilnvalidAddress The offset parameter is not aligned based on the AccessType
ApilnvalidSize The transfer size parameter is 0 or is not aligned based on the AccessType

Notes:

This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PIxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a read from the device’s local bus. If no device on the local bus responds,
system crashes may result. Please make sure that valid devices are accessible and addresses are correct
before using this function

Usage:

U32 buffer[0x40];

// Read from an absolute local bus address
PIxPci_PciBarSpaceRead(

pDevice,

2, // Use BAR 2

0x00100000, // Absolute local address of 1MB
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSize32, // 32-bit accesses

TRUE // Treat offset as a local bus address
)

// Read from an offset into the PCI BAR
PIxPci_PciBarSpaceRead(

pDevice,

3, // Use BAR 3

0x00000100, // Offset from BAR to start reading from
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSizel6, // 16-bit accesses

FALSE // Treat Offset as an offset from BAR

)

5-83

PIxPci_PciBarSpaceWrite

Syntax:

PLX_STATUS
PIxPci_PciBarSpaceWrite(
PLX_DEVICE_OBJECT *pDevice

us BarlIndex,

u32 offset,

VOID *pBuffer,

u32 ByteCount,
PLX_ACCESS_TYPE AccessType,
BOOLEAN bOffsetAslLocalAddr
)

PLX Chip Support:
All 9000 series & 8311

Description:
Writes to the specified PCI BAR space of PLX chip (sometimes referred to as Direct Slave Write).

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that contains the data to write.

ByteCount
The number of bytes to write. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-84

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidHandle The function was passed an invalid device handle
ApiNullParam One or more parameters is NULL
ApiPowerDown The PLX device is in a power state that is lower than required for this function
ApilnsufficientResources | The API was unable to communicate with the driver due to insufficient resources
ApilnvalidAccessType An invalid or unsupported PLX_ACCESS_TYPE parameter
ApilnvalidAddress The address parameter is not aligned based on the accessType
ApilnvalidSize The transfer size parameter is 0 or is not aligned based on the accessType

Notes:

This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PIxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a write to the device’s local bus. If no device on the local bus responds, system
crashes may result. Please make sure that valid devices are accessible and addresses are correct before using
this function.

Usage:

U32 buffer[0x40];

// Write to an absolute local bus address
PIxPci_PciBarSpaceWrite(

pDevice,

2, // Use BAR 2

0x00100000, // Absolute local address of 1MB
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSize32, // 32-bit accesses

TRUE // Treat offset as a local bus address
)

// Write to an offset from the PCl BAR window
PIxPci_PciBarSpaceWrite(

pDevice,

3, // Use BAR 3

0x00000100, // Offset from BAR to start reading from
buffer, // Source buffer

sizeof(buffer), // Buffer size in bytes

BitSizel6, // 16-bit accesses

FALSE // Treat Offset as an offset from BAR

)

5-85

PIxPci_PciBarMap

Syntax:

PLX_STATUS

PIxPci_PciBarMap(
PLX_DEVICE_OBJECT *pDevice
us BarlIndex,
VOID **pVa

E
PLX Chip Support:

All devices

Description:

Maps a PCI BAR into user virtual space and returns the virtual address. User applications may then bypass the
driver and directly access a PCI space for optimal performance.

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to map. Valid values are in the range 0-5.

pVa
Pointer to a buffer which will contain the base virtual address

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL
ApiUnsupportedFunction Mapping of a PCI BAR space is not supported by the installed PLX driver
Apilnvalidindex PCI BAR index is not in the range of valid values
ApiFailed Virtual address mapping failed
ApilnvalidPciSpace The PCI space is of type /O, not memory
ApilnvalidSize The PCI space is of size 0 (disabled)
ApilnvalidAddress The PCI space does not contain a valid PCI address or is disabled
ApilnsufficientResources The driver was not able to map the space due to insufficient OS resources

Notes:

It is important to un-map a PCI Space when the virtual address is no longer needed. This should always be
done before the device is released with PIxPci_DeviceClose. Un-mapping a space will release the PTE
resources used back to the OS. Refer to PIxPci_PciBarUnmap.

The PCI space that will be mapped into user virtual space must be a PCI memory type. Mapping of I/O type
spaces is not allowed. 1/O type spaces should be accessed with PIxPci_loPortRead and PIxPci_loPortWrite.

The virtual address will cease to be valid after the device is closed. Attempts to use the virtual address after closing a
device will result in exceptions.

5-86

Virtual mappings consume Page-Table Entries (PTEs), which are a limited resource in the OS. The OS will fall
a mapping attempt if the number of available PTEs is insufficient to complete the mapping. As the size of a PCI
space gets larger (e.g. 16MB or more), the number of PTEs required increases, resulting in a greater risk of a
failed mapping attempt.

Usage:
us i;
u32 DataValue;
VOID *Val[6];

PLX_STATUS rc;

for (i = 0; 1 <= 5; i++)

{
rc =
PIxPci_PciBarMap(
pDevice,
is
&Va[i]
)
if (rc = ApiSuccess)
// Error — Unable to map PCl bar into virtual space
}
}
printf(

BAR O VA: Ox%08x\n"'

' BAR 1 VA: Ox%08x\n"'

" BAR 2 VA: 0Ox%08x\n""

" BAR 3 VA: 0Ox%08x\n""

" BAR 4 VA: Ox%08x\n"'

" BAR 5 VA: Ox%08x\n",

(PLX_UINT_PTR)Va[0], (PLX_UINT_PTR)Va[1], (PLX_UINT_PTR)Va[2],
(PLX_UINT_PTR)Va[3], (PLX_UINT_PTR)Va[4], (PLX_UINT_PTR)Va[5]
)

/***

* NOTE: The configuration of a PCl space is left to the application
* The translation registers should be configured correctly

* before accessing the PCI space.
**/

// Read a 32-bit value from PCl BAR O
value = *(U32*)Va[0];

// Write an 8-bit value to PClI BAR 1, offset 3Ch
((U8)Va[1l] + O0x3C) = Ox1A;

5-87

PIxPci_PciBarProperties

Syntax:

PLX_STATUS

PIxPci_PciBarProperties(
PLX_DEVICE_OBJECT *pDevice
us BarlIndex,
PLX_PCI_BAR_PROP *pBarProperties

E
PLX Chip Support:

All devices

Description:
Returns the properties of the specified PCI BAR space.

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to get. Valid values are in the range 0-5.

pBarProperties
A pointer to a PLX_PCI_BAR_PROP structure that will hold the BAR properties

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiNullParam One or more parameters is NULL
Apilnvalidindex PCI BAR index is not in the range of valid values

Usage:
PLX_PCI_BAR_PROP BarProp

// Get BAR 2 size
PIxPci_PciBarProperties(
pDevice,
2,
&BarProp

);

Cons_Printf(
"BAR 2: %d bytes",
BarProp.Size

);

5-88

PIxPci_PciBarUnmap

Syntax:

PLX_STATUS

PIxPci_PciBarUnmap(
PLX_DEVICE_OBJECT *pDevice
VOID **pVa

):
PLX Chip Support:

All devices

Description:

Unmaps a PCI BAR space from user virtual space, previously mapped with PIxPci_PciBarMap.

Parameters:

pDevice
Pointer to an open device

pVa

Pointer to the virtual address of the PCI BAR to unmap, previously obtained from PIxPci_PciBarMap.

Return Codes:

Code
ApiSuccess The function returned successfully and at least one event ocurred
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiUnsupportedFunction Unmapping of a PCI BAR space is not supported by the installed PLX driver
ApiNullParam One or more parameters is NULL
ApilnvalidAddress The virtual address is invalid or not a previously mapped address

Notes:

The virtual address must be an address previously obtained with a call to PIxPci_PciBarMap.

This function should be called before a device is released with PIxPci_DeviceClose. The virtual address will cease to

be valid after the device is closed.

5-89

Usage:

u32 *Va;
PLX_STATUS rc;

// Map PCl BAR O

rc =
PIxPci_PciBarMap(
pDevice,
0!
(VOID**)&Va
):
if (rc = ApiSuccess)
{
// Error — Unable to map PCl bar into virtual space
}
//
// Access PCl space as needed ...
//

// Unmap the space
rc =
PIxPci_PciBarUnmap(
pDevice,
(VOID**)&Va

)
if (rc = ApiSuccess)

// Error — Unable to unmap PCI BAR from virtual space

}

5-90

PIxPci_PciRegisterRead

Syntax:

u32

PIxPci_PciRegisterRead(
us bus,
us slot,
us function,
ule offset,
PLX_STATUS *pStatus
);

PLX Chip Support:

All devices

Description:

Returns the value of a PCI configuration register at a specified offset

Parameters:

bus
Device bus number

slot
Device slot number

function

Device function number

offset

PCI register 32-bit aligned offset

pStatus

Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApiNoActiveDriver

A valid PLX driver is not loaded in the system

ApiConfigAccessFailed

The PCI configuration access failed or device does not exist

Notes:

For faster access to the PCI registers of a device that is already selected, refer to the function
PIxPci_PciRegisterReadFast.

5-91

Usage:

us bus;
us slot;
u3s2 RegVvalue;

PLX_STATUS rc;

// Scan for all PCIl devices
for (bus = 0; bus < 32; bus++)

{
for (slot = 0; slot < 32; slot+)
// Read the Device/Vendor 1D
RegVvalue =
PIxPci_PciRegisterRead(
bus,
slot,
o, // Just function 0 devices
0x0, // Device/Vendor ID register
&rc
);
if ((rc == ApiSuccess) && (RegvValue 1= (U32)-1))
// Found a valid PCI device
Cons_Printf(
“Device ID: %08x [bus %02x slot %02x]J\n”,
Regvalue, bus, slot
)
3
3
}

5-92

PIxPci_PciRegisterWrite

Syntax:

PLX_STATUS
PIxPci_PciRegisterWrite(
U8 bus,
ugs slot,
U8 function,
Ul6 offset,
uU32 value

)
PLX Chip Support:

All devices

Description:

Writes a 32-bit value to a PCI configuration register at a specified offset

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApiNoActiveDriver A valid PLX driver is not loaded in the system
ApiConfigAccessFailed The PCI configuration access failed or device does not exist

Notes:

For faster access to the PCI registers of a device that is already selected, refer to the function

PIxPci_PciRegisterWriteFast.

5-93

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Read the PCl Command/Status register
RegvValue =
PIxPci_PciRegisterRead(
1,
Oxe,
o,
CFG_COMMAND, // PCl Command/Status register
&rc

)
if (rc = ApiSuccess)

// ERROR — Unable to read PCI configuration register
}

// Check for any PCl Errors or Aborts
it (Regvalue & 0xf8000000)

// Write PCl Status back to itself to clear any errors
rc =
PIxPci_PciRegisterWrite(

11

Oxe,

01

CFG_COMMAND,

RegVvalue

)
if (rc = ApiSuccess)

// ERROR — Unable to write to PCl configuration register

5-94

PIxPci_PciRegisterReadFast

Syntax:
u32

PIxPci_PciRegisterReadFast(
PLX_DEVICE_OBJECT *pDevice

ul6

offset,

PLX_STATUS *pStatus

)

PLX Chip Support:

All devices

Description:

Reads the value of a PCI configuration register on the selected device.

Parameters:

pDevice

Pointer to an open device

offset

PCI register 32-bit aligned offset

pStatus

Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApiConfigAccessFailed The PCI configuration access failed or device does not exist
Usage:
us2 RegVvalue;

PLX_STATUS rc;

// Read

RegVvalue

Device/Vendor 1D

PIxPci_PciRegisterReadFast(

if ((rc

pDevice,
CFG_VENDOR_D,
&rc

E
I= ApiSuccess) || (Regvalue == (U32)-1))

// ERROR — Unable to read PCI register

}

5-95

PIxPci_PciRegisterWriteFast

Syntax:
PLX_STATUS

PIxPci_PciRegisterWriteFast(
PLX_DEVICE_OBJECT *pDevice

ul6
u32

)

PLX Chip Support:

All devices

Description:

offset,
value

Writes to a PCI configuration register on the selected device.

Parameters:

pDevice

Pointer to an open device

offset

PCI register 32-bit aligned offset

value

The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiConfigAccessFailed

The PCI configuration access failed or device does not exist

5-96

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Read the PCl Command/Status register

Regvalue =
PIxPci_PciRegisterReadFast(
pDevice,
CFG_COMMAND, // PCl Command/Status register
&rc
)
if (rc = ApiSuccess)
{

// ERROR — Unable to read PCI configuration register
}

// Check for any PCl Errors or Aborts
if (RegValue & 0xf8000000)

// Write PCl Status back to itself to clear any errors

rc =
PIxPci_PciRegisterWriteFast(
pDevice,
CFG_COMMAND,
RegVvalue
)
if (rc = ApiSuccess)
// ERROR — Unable to write to PCl configuration register
}

5-97

PIxPci_PciRegisterRead BypassOS

Syntax:

u32

PIxPci_PciRegisterRead_BypassOS(
us bus,
us slot,
us function,
ule offset,
PLX_STATUS *pStatus
);

PLX Chip Support:

All devices

Description:

Bypasses the OS services to read a specific PCI configuration register

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNoActiveDriver A valid PLX driver is not loaded in the system
ApiUnsupportedFunction The function is not supported by the installed PLX driver

Notes:

Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI 1/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return ApiSuccess in the return code, this does not necessarily indicate a successful
access to the device since the driver gets no indication of success or failure. If the register value returned is
FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

5-98

Usage:

us bus;
us slot;
u3s2 RegVvalue;

PLX_STATUS rc;

// Scan for all PCIl devices
for (bus = 0; bus < 32; bus++)

{
for (slot = 0; slot < 32; slot+)
{
// Read the Device/Vendor ID
RegVvalue =
PIxPci_PciRegisterRead_ Bypass0S(
bus,
slot,
o, // Just function O devices
0x0, // Device/Vendor 1D
&rc
);
if ((rc == ApiSuccess) && (RegValue = OxXFFFFFFFF))
// Found a valid PCIl device
Cons_Printf(
“Device ID: %08x [bus %02x slot %02x]J\n”,
Regvalue, bus, slot
)
}
3
3

5-99

PIxPci_PciRegisterWrite_BypassOS

Syntax:

PLX_STATUS
PIxPci_PciRegisterWrite_Bypass0S(
U8 bus,
ugs slot,
U8 function,
Ul6 offset,
uU32 value

)
PLX Chip Support:

All devices

Description:

Bypasses the OS services to write to a specific PCI configuration register

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNoActiveDriver A valid PLX driver is not loaded in the system
ApiUnsupportedFunction The function is not supported by the installed PLX driver

Notes:

Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI 1/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return ApiSuccess in the return code, this does not necessarily indicate a successful
access to the device since the driver gets no indication of success or failure. If the register value returned is
FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

Use of this function is NOT recommended. Direct modification of PCI registers may result in system instability
or device failure. This function is provided only for completeness and for reference purposes.

5-100

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Read the PCl Command/Status register

RegvValue =
PIxPci_PciRegisterRead(
11
Oxe,

05
CFG_COMMAND, // PCl Command/Status register

&rc

)

if (rc = ApiSuccess)

{

}

// Check for any PCl Errors or Aborts
it (Regvalue & 0xf8000000)

// ERROR — Unable to read PCI configuration register

// Write PCl Status back to itself to clear any errors
rc =
PIxPci_PciRegisterWrite_Bypass0S(

11

Oxe,

01

CFG_COMMAND,

RegVvalue

)
if (rc = ApiSuccess)

// ERROR — Unable to write to PCl configuration register
}

5-101

PIxPci_PerformanceCalcStatistics

Syntax:

PLX_STATUS
PIxPci_PerformanceCalcStatistics(
PLX_PERF_PROP *pPerfProp,
PLX_PERF_STATS *pPerfStats,

u3s2 ElapsedTime_ms

E
PLX Chip Support:

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Uses the performance properties to calculate the resulting performance statistics for a specific port

Parameters:

pPerfProp
Pointer to a PLX_PERF_PROP structure that contains the performance counters and properties filled in
from a call to PIxPci_PerformanceGetCounters().

pPerfStats
Pointer to a PLX_PERF_STATS structure that will contain the calculated performance statistics based

upon the counters and elapsed time.

ElapsedTime_ms
The elapsed time in milliseconds betweens reads of the Performance Counters (i.e. calls to
PIxPci_PerformanceGetCounters()).

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidData Elapsed time is invalid

Notes:

5-102

Usage:

u3s2 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_START

)

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-103

PIxPci_PerformanceGetCounters

Syntax:
PLX_STATUS

PIxPci_PerformanceGetCounters(
PLX_DEVICE_OBJECT *pDevice

PLX_PERF_PROP

us
)

PLX Chip Support:

*pPerfProp,
NumOfObjects

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Fills in all the performance counters in the provided performance property objects

Parameters:

pDevice

Pointer to an open device

pPerfProp

A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects

Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened or one or
more PLX_PERF_PROP objects is invalid or has not been initialized.

ApiUnsupportedFunction

The PLX chip does not support Performance Counters.

Notes:

5-104

Usage:

u3s2 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_START

)

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-105

PIxPci_PerformancelnitializeProperties

Syntax:
PLX_STATUS

PIxPci_PerformancelnitializeProperties(
PLX_DEVICE_OBJECT *pDevice

PLX_PERF_PROP

):
PLX Chip Support:

*pPerfProp

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Initializes a performance object for use with the performance counter functions

Parameters:

pDevice

Pointer to an open device

pPerfProp

Pointer to a PLX_PERF_PROP object

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened or one or more
PLX_PERF_PROP objects is invalid or has not been initialized.

ApiUnsupportedFunction

The PLX chip does not support Performance Counters or the port number is invalid.

Notes:

5-106

Usage:

u3s2 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_START

)

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-107

PIxPci_PerformanceMonitorControl

Syntax:
PLX_STATUS

PIxPci_PerformanceMonitorControl (
PLX_DEVICE_OBJECT *pDevice

PLX_PERF_CMD
);

PLX Chip Support:

command

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Controls the PLX Performance Counters

Parameters:

pDevice

Pointer to an open device

command

A PLX_PERF_CMD that specifies the operation to perform

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened

ApiUnsupportedFunction

The PLX chip does not support Performance Counters.

ApilnvalidData

The command parameter is not a valid PLX_PERF_CMD value.

Notes:

5-108

Usage:

u3s2 ElapsedTime_ms;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Set desired elapsed time
ElapsedTime_ms = 1000;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp
);

// Start performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_START
E

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Insert small delay
PIx_sleep(ElapsedTime ms);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Stop performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_STOP

)

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

)

5-109

PIxPci_PerformanceResetCounters

Syntax:
PLX_STATUS

PIxPci_PerformanceResetCounters(
PLX_DEVICE_OBJECT *pDevice

PLX_PERF_PROP

us
)

PLX Chip Support:

*pPerfProp,
NumOfObjects

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Resets all the performance counters in the provided performance property objects

Parameters:

pDevice

Pointer to an open device

pPerfProp

A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects

Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL

ApilnvalidDevicelnfo

The device object is not a valid PLX device or has not been opened or
one or more PLX_PERF_PROP objects is invalid or has not been
initialized.

ApiUnsupportedFunction

The PLX chip does not support Performance Counters.

Notes:

5-110

Usage:

u3s2 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_START

)

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

)

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-111

PIxPci_PhysicalMemoryAllocate

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryAllocate(
PLX_DEVICE_OBJECT *pDevice
PLX_PHYSICAL_MEM *pMemorylnfo,
BOOLEAN bSmal lerOk

E
PLX Chip Support:

All devices

Description:

Attempts to allocate a physically contiguous, page-locked buffer which is safe for use with DMA operation.

Parameters:

pDevice
Pointer to an open device

pMemoryinfo
A pointer to a PLX_PHYSICAL_MEM structure will contain the buffer information. The requested size of
the buffer to allocate should be set in this structure before making the call. The actual size of the
allocated buffer will be specified in the same field when the call returns.

bSmallerOk
Flag to specify whether a buffer of size smaller than specified is acceptable

e If FALSE, the driver will return an error if the buffer allocation fails

o |If TRUE and the allocation fails, the driver will reattempt to allocate the buffer, but decrement
the size each time until the allocation succeeds.

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnsufficientResources Insufficient resource to allocate buffer

Notes:

The allocation of a physically contiguous page-locked buffer is dependent upon system resources and the
fragmentation of memory. This type of memory is typically a limited resource in OS environments. As a result,
allocation of large size buffers (> 512k) may fail.

In current versions of Linux, the size of a buffer is additionally limited. In Linux kernel version 2.4 & 2.6, the maximum
is 4MB unless the kernel is modified.

It is possible to call this function to allocate multiple buffers, even if a single call for a large buffer may fail. For example,
a call to allocate a 4MB buffer may fail, but two calls to allocate two 2MB buffers may succeed. It must be noted,
however, that these buffers together do not make up a contiguous 4MB block in memory; they are separate.

5-112

The purpose of these buffers is typically for use with PLX DMA engines or for transfers across an NT port. Since the
buffers are page-locked and physically contiguous in memory, the DMA engine can access the memory as one
continuous block. When using a buffer for DMA transfers, the bus physical address should be used when specifying
the PCI address of a block DMA transfer.

The allocated buffer is not mapped into user virtual space when allocated. To map the buffer into virtual space, use
PIxPci_PhysicalMemoryMap.

Usage:

PLX_STATUS rc;
PLX_PHYSICAL_MEM Buffer 1;
PLX_PHYSICAL_MEM Buffer 2;

// Allocate a buffer that must succeed

// Set desired size
Buffer_1.Size = 0x300000; // 3MB

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer_ 1,
FALSE // Do not allocate a smaller buffer on failure
)

if (rc = ApiSuccess)

// Error — unable to allocate physical buffer

}

// Allocate a buffer, accepting any size

// Set desired size
RequestSize = 0x1000000; // 16MB
Buffer_2.Size = RequestSize;

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer_ 2,
TRUE // A smaller size buffer is acceptable

)
if (rc '= ApiSuccess)

// Error — unable to allocate physical buffer

}

if (Buffer_2.Size !'= RequestSize)

// Buffer allocated, but smaller than requested size

}

5-113

PIxPci_PhysicalMemoryFree

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryFree(
PLX_DEVICE_OBJECT *pDevice
PLX_PHYSICAL_MEM *pMemorylInfo

):
PLX Chip Support:

All devices

Description:

Releases a buffer previously allocated with PIxPci_PhysicalMemoryAllocate.

Parameters:

pDevice
Pointer to an open device

pMemorylinfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidData The buffer information is invalid or it was not allocated with PIxPci_PhysicalMemoryAllocate

Notes:

If the buffer was previously mapped to user virtual space, with PIxPci_PhysicalMemoryMap, it should be unmapped
with PIxPci_PhysicalMemoryUnmap before freeing it from memory.

Once this buffer is released, any virtual mappings to it will fail and the buffer should no longer be used by hardware,
such as the DMA engine. The memory will be returned to the operating system.

All allocated buffers should be unmapped and freed before releasing a device with a call to PIxPci_DeviceClose.
Buffers will become invalid once a device is released.

5-114

Usage:
PLX_STATUS rc;

PLX_PHYSICAL MEM Buffer;
// Allocate a buffer

// Set desired size
Buffer.Size = 0x1000;

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer,
FALSE // Do not allocate a smaller buffer on failure
);

if (rc = ApiSuccess)

// Error — unable to allocate physical buffer

3

//

// Use the buffer as needed

//

// Release the buffer

rc =

PIxPci_PhysicalMemoryFree(

pDevice,
&Buffer
)

if (rc = ApiSuccess)

// Error — unable to free physical buffer

}

5-115

PIxPci_PhysicalMemoryMap

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryMap(
PLX_DEVICE_OBJECT *pDevice
PLX_PHYSICAL_MEM *pMemorylInfo

):
PLX Chip Support:

All devices

Description:

Maps into user virtual space a buffer previously allocated with PIxPci_PhysicalMemoryAllocate.

Parameters:

pDevice
Pointer to an open device

pMemorylinfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidData Buffer information is invalid or buffer not allocated properly
ApilnvalidAddress Physical address of buffer is invalid or buffer not allocated properly
ApilnsufficientResources Insufficient resources to perform the mapping

Notes:

Mapping of physical memory into user virtual space may fail due to insufficient Page-Table Enties (PTEs). The
larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to
PIxPci_PhysicalMemoryUnmap.

5-116

Usage:

us value;
PLX_STATUS rc;
PLX_PHYSICAL _MEM Buffer;

// Allocate a buffer

// Set desired size
Buffer.Size = 0x1000;

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer,
FALSE // Do not allocate a smaller buffer on failure
)

if (rc = ApiSuccess)

// Error — unable to allocate physical buffer

}
// NMap the buffer into user space
rc =
PIxPci_PhysicalMemoryMap(
pDevice,
&Buffer
):

if (rc = ApiSuccess)

// Error — unable to map physical buffer
}

// Write 32-bit value to buffer
(U32) (Buffer.UserAddr + 0x100) = 0x12345;

// Read 8-bit value from buffer
value = *(U8*)(Buffer.UserAddr + 0x54);

5-117

PIxPci_PhysicalMemoryUnmap

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryUnmap(
PLX_DEVICE_OBJECT *pDevice
PLX_PHYSICAL_MEM *pMemorylInfo

):
PLX Chip Support:

All devices

Description:
Unmaps a physical buffer previously mapped with PIxPci_PhysicalMemoryMap.

Parameters:

pDevice
Pointer to an open device

pMemorylinfo
A pointer to a PLX_PHYSICAL_ MEM structure which contains the buffer information

Return Codes:

Code Description
ApiSuccess The function returned successfully and at least one event ocurred
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidAddress The virtual address is invalid or was not previously mapped with PIxPci_PhysicalMemoryMap
ApilnvalidData The buffer information is invalid or it was not allocated with PIxPci PhysicalMemoryAllocate

Notes:

It is important to unmap a physical buffer when it is no longer needed to release mapping resources back to the
system.

The buffer should be un-mapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after un-mapping the buffer.

5-118

Usage:

PLX_STATUS rc;
PLX_PHYSICAL_MEM Buffer;

// Allocate a buffer (not shown)

// Map buffer into user space to get virtual address

rc =
PIxPci_PhysicalMemoryMap(
pDevice,
&Buffer
)
if (rc = ApiSuccess)
{
// Error — unable to map physical buffer
}
//
// Access buffer as needed
//

// Unmap the buffer from virtual space
rc =
PIxPci_PhysicalMemoryUnmap(
pDevice,
&Buffer

)

if (rc = ApiSuccess)

// Error — unable to unmap physical buffer

}

5-119

PIxPci_PIxRegisterRead

Syntax:

u32
PIxPci_PIxRegisterRead(
PLX_DEVICE_OBJECT *pDevice

u32 offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:

Reads a PLX-specific register from the selected device

Parameters:

pDevice
Pointer to an open device

offset
PLX register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidOffset The register offset is not aligned or is not one a PLX-specific register

Notes:

For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-120

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Read the PCl Control register

RegvValue =
PIxPci_PIxRegisterRead(
pDevice,
0x100cC, // PCIl Control register
&rc
)
if (rc = ApiSuccess)
{
// ERROR — Unable to read PLX register
}

// Determine PCI clock rate
if (Regvalue & (1 << 7))

// PCI clock is running at 66MHz
else

// PCI clock is running at 33MHz

5-121

PIxPci_PIxRegisterWrite

Syntax:

PLX_STATUS
PIxPci_PlIxRegisterWrite(
PLX_DEVICE_OBJECT *pDevice

u32 offset,
u32 value
)

PLX Chip Support:
All PLX devices

Description:

Writes to a PLX-specific register on the selected device

Parameters:

pDevice
Pointer to an open device

offset
PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidOffset The register offset is not aligned or is not one a PLX-specific register

Notes:

For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-122

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Write a value to the Mailbox 1 register

rc =
PIxPci_PlIxRegisterWrite (
pDevice,
0x1034, // Mailbox 1 register
OxFF001300
)

if (rc = ApiSuccess)

// ERROR — Unable to write to PLX register
}

5-123

PIxPci_PlxMappedRegisterRead

Syntax:

u32
PIxPci_PIxMappedRegisterRead(
PLX_DEVICE_OBJECT *pDevice

u32 offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:

Reads a PLX-specific register from the selected device without adjusting the offset based on the port.

Parameters:

pDevice
Pointer to an open device

offset
PLX register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidOffset The register offset is not aligned or is not one a PLX-specific register

Notes:

This function is identical to PIxPci_PIxRegisterRead except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-124

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Read register 264h from Port 9
RegvValue =

PIxPci_PIxMappedRegisterRead(
pDevice,

0x264 + (9 * (4 * 1024)),
&rc
):

if (rc = ApiSuccess)

// ERROR — Unable to read PLX

register

5-125

PIxPci_PlxMappedRegisterWrite

Syntax:

PLX_STATUS
PIxPci_PIxMappedRegisterWrite(
PLX_DEVICE_OBJECT *pDevice

u32 offset,
u32 value
)

PLX Chip Support:
All PLX devices

Description:

Writes to a PLX-specific register on the selected device without adjusting the offset based on the port

Parameters:

pDevice
Pointer to an open device

offset
PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
ApilnvalidOffset The register offset is not aligned or is not one a PLX-specific register

Notes:

This function is identical to PIxPci_PIxRegisterWrite except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-126

Usage:

u3s2 RegVvalue;
PLX_STATUS rc;

// Write a value to register 660h from Port 8
rc =
PIxPci_PlIxMappedRegisterWrite(
pDevice,
0x660 + (8 * (4 * 1024)),

OxFF001300
):

if (rc = ApiSuccess)

// ERROR — Unable to write to PLX register
}

5-127

PIxPci_VpdRead

Syntax:

u32
PIxPci_VpdRead(
PLX_DEVICE_OBJECT *pDevice

ule offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:

Reads a 32-bit value at a specified offset of the Vital Product Data.

Parameters:

pDevice
Pointer to an open device

offset
The is the byte offset to read from (must be aligned 32-bit boundary)

pStatus
A pointer to a buffer for the return code

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened
Usage:
u32 VpdData;

PLX_STATUS rc;

// Read the default Space 1 range (assuming a 9054)
VpdData =
PIxPci_VpdRead(
pDevice,
0x48,
&rc

)
if (rc = ApiSuccess)

// ERROR — Unable to read VPD data

5-128

PIxPci_VpdWrite

Syntax:

PLX_STATUS
PIxPci_VpdWrite(
PLX_DEVICE_OBJECT *pDevice

ulie offset,
u32 value
)

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:
Write a 32-bit value to a specified offset of the Vital Product Data.

Parameters:

pDevice
Pointer to an open device

offset
The is the byte offset to write to (must be aligned 32-bit boundary)

value
The 32-bit value to write

Return Codes:

Code Description
ApiSuccess The function returned successfully
ApiNullParam One or more parameters is NULL
ApilnvalidDevicelnfo The device object is not a valid PLX device or has not been opened

Usage:

// Write the new Device/Vendor ID (assuming 9054 device)
PIxPci_VpdWrite(

pDevice,

0x0,

0x186010b5

)

// Write custom data to non-PLX used EEPROM space
PIxPci_VpdWrite(
pDevice,
0x60, // 9054 data ends at 0x58
0x0024beef

)

5-129

5.2 PLX API Data Structures and Types

This section documents details of the structures and data types used by the PLX API.

5.2.1 Standard Data Types

These data types are used for code portability between all supported environments. PLX header files
automatically define the definitions depending upon the build environment.

Data Type Storage Allocation
S8 Signed 8-bit
Us Unsigned 8-hit
S16 Signed 16-bit
ul6 Unsigned 16-bit
S32 Signed 32-bit
u32 Unsigned 32-bit
S64 Signed 64-bit
ue4 Unsigned 64-bit
PLX INT PTR Typgs large enough to cqntain a pqinter on the target platform. Will be 32-pit on
PLX UINT PTR 32-bit platforms and 64-b|t on 64-bit CPU platforms. Signed (INT) and unsigned
— - (UINT) types are provided.

5.2.1.1 Code Portability Macros

To support source code portability between platforms, the following macros are provided:
e PLX PTR_TO_INT(pointer) - Converts a pointer to an integer
e PLX_INT_TO_PTR(integer) - Convert an integer to a pointer

5.2.2 Enumerated Types

This section contains the enumerated data types used in the PLX API.

5-130

PLX_ACCESS_TYPE
typedef enum _ACCESS_TYPE

BitSize8,
BitSizel6,
BitSize32,
BitSize64
} ACCESS_TYPE;

Purpose
Enumerated type used for determining the access type size for a data transfer.

Members

BitSize8
Use 8-bits access

BitSizel6
Use 16-bit access

BitSize32
Use 32-bit access

BitSize64
Use 64-bit access (may not be supported on target platform)

5-131

PLX_API_MODE

typedef enum _PLX_API_MODE

PLX_AP1_MODE_PCI,
PLX_AP1_MODE_12C_AARDVARK,
PLX_AP1_MODE_TCP

} PLX_API_MODE;

Purpose

Enumerated type to specify the method used to access a device.

Members

PLX_API_MODE_PCI
Device is accessed via the PLX driver over PCI/PCI Express bus

PLX_API_MODE_I2C_AARDVARK
Device is accessed over I°C using the Aadvark USB I°C /SPI connector

PLX_API_MODE_TCP
Device is accessed over TCP/IP (not currently supported)

5-132

PLX_DMA_COMMAND
typedef enum _PLX_DMA_COMMAND

DmaPause,
DmaPauselmmediate,
DmaResume,
DmaAbort

} PLX _DMA_COMMAND;

Purpose
Enumerated type used to control DMA transfers.

Members

DmaPause
Pause a DMA transfer, gracefully if supported by hardware (i.e. completes pending transfers, etc).

DmaPauselmmediate
Pause a DMA transfer immediately without waiting for pending transfers to complete.

DmaResume
Resume a paused DMA transfer.

DmaAbort
Abort a DMA transfer.

5-133

PLX_DMA_DESCR_MODE

typedef enum _PLX_DMA_DESCR_MODE

PLX_DMA_MODE_BLOCK
PLX_DMA_MODE_SGL
} PLX_DMA_DESCR_MODE;

Purpose

Enumerated type used to control DMA transfers.

Members

PLX_DMA_MODE_BLOCK
DMA operates in single transfer block mode

PLX_DMA_MODE_SGL
DMA operates in SGL (ring) transfer mode

5-134

PLX DMA_RING_DELAY_TIME
typedef enum _PLX_DMA_RING_DELAY_ TIME

PLX_DMA_RING_DELAY_0O
PLX_DMA_RING_DELAY_1us
PLX_DMA_RING_DELAY_ 2us
PLX_DMA_RING_DELAY_8us
PLX_DMA_RING_DELAY 32us
PLX_DMA_RING_DELAY_128us
PLX_DMA_RING_DELAY_512us
PLX_DMA_RING_DELAY_1ms

} PLX_DMA_RING_DELAY_TIME;

~N~Nouh~hWNEFO

Purpose

In SGL mode, when DMA reaches the end of the ring and ring wrap mode is enabled, this controls the delay
before the DMA wraps back to the beginning of the ring.

Members

DMA ring delay period varies from none or 1us > 1ms via preset values. Refer to the member name for the
delay time.

5-135

PLX_DMA_DIR

typedef enum _PLX DMA DIR

PLX_DMA_PCI_TO_LOC

PLX_DMA_LOC_TO_PCI

PLX_DMA_USER_TO_PCI

PLX_DMA_PCI_TO_USER
} PLX_DMA DIR;

o, // PCl --> Local bus (9000 DMA)
1, // Local bus --> PCI (9000 DMA)
PLX_DMA_PCI_TO_LOC, // User buffer --> PCl (8600 DMA)
PLX_DMA_LOC_TO_PCI // PCl --> User buffer (8600 DMA)

Purpose

Enumerated type used to specify the direction of DMA transfers.

Members

PLX_DMA_PCI_TO_LOC (9000 DMA)
Sets the DMA transfer direction from PCI = Local Bus

PLX_DMA_LOC_TO_PCI (9000 DMA)
Sets the DMA transfer direction from Local Bus = PCI

PLX_DMA_USER_TO_PCI (8600 DMA)
Sets the DMA transfer direction from a user mode provided buffer > a destination PCI address

PLX_DMA_PCI_TO_USER (8600 DMA)
Sets the DMA transfer direction from a source PCI address - a user mode provided buffer

5-136

PLX DMA_MAX_SRC_TSIZE
typedef enum _PLX_DMA_MAX_SRC_TSIZE

PLX_DMA_MAX_SRC_TSIZE_64B
PLX_DMA_MAX_SRC_TSIZE_128B
PLX_DMA_MAX_SRC_TSIZE_256B
PLX_DMA_MAX_SRC_TSIZE_512B
PLX_DMA_MAX_SRC_TSIZE_1K
PLX_DMA_MAX_SRC_TSIZE_2K
PLX_DMA_MAX_SRC_TSIZE_4K
} PLX_DMA_SRC_MAX_TSIZE;

L | B R V1|
~N~NOR~AWNEFO

Purpose

Limits the TLP read request size when the DMA engine reads the source location.

Members

DMA maximum transfer sizes vary from 64B > 4KB.. Refer to the member name for the maximum transfer size

5-137

PLX_EEPROM_STATUS

typedef enum _PLX_EEPROM_STATUS

PLX_EEPROM_STATUS_NONE
PLX_EEPROM_STATUS_VALID
PLX_EEPROM_STATUS_INVALID_DATA
PLX_EEPROM_STATUS_BLANK
PLX_EEPROM_STATUS_CRC_ERROR

} PLX_EEPROM_STATUS;

NEF O

PLX_EEPROM_STATUS_INVALID_DATA,
PLX_EEPROM_STATUS_INVALID_DATA

Purpose
Enumerated type used for providing EEPROM status

Members

PLX_EEPROM_STATUS_NONE
EEPROM not present.

PLX_EEPROM_STATUS_VALID
EEPROM is present with valid data

PLX_EEPROM_STATUS_INVALID_DATA
EEPROM is present with invalid data or CRC error

PLX_EEPROM_STATUS_BLANK
EEPROM is blank. Returns same value as PLX_EEPROM_STATUS_INVALID_DATA

PLX_EEPROM_STATUS_CRC_ERROR
EEPROM has CRC error. Returns same value as PLX_EEPROM_STATUS_INVALID_DATA

5-138

PLX_NT_PORT_TYPE

typedef enum _PLX_NT_PORT_TYPE

PLX_NT_PORT_NONE 0,
PLX_NT_PORT_PRIMARY 1,
PLX_NT_PORT_SECONDARY 2

PLX_NT_PORT_VIRTUAL

PLX_NT_PORT_LINK

PLX_NT_PORT_UNKOWN
} PLX_NT_PORT_TYPE;

OxFF

Purpose
Enumerated type used for providing EEPROM status

Members

PLX_NT_PORT_NONE
Port is not an NT port

PLX_NT_PORT_PRIMARY
Port is located on the primary side of the PLX chip

PLX_NT_PORT_SECONDARY
Port is located on the secondary side of the PLX chip

PLX_NT_PORT_VIRTUAL
Same as PLX_NT_PORT_PRIMARY

PLX_NT_PORT_LINK
Same as PLX_NT_PORT_SECONDARY

PLX_NT_PORT_UNKNOWN
PLX driver was unable to determine NT port side

PLX_NT_PORT_PRIMARY,
PLX_NT_PORT_SECONDARY,

//
//

//
/7/
//

Not an NT port

NT Primary Host side

NT Seconday Host side
NT Virtual-side port

NT Link-side port

NT side undetermined

5-139

PLX_PERF_CMD

typedef enum _PLX PERF_CMD

PLX_PERF_CMD_START,
PLX_PERF_CMD_STOP,
} PLX_PERF_CMD;
Purpose

Commands to control the PLX Performance Counters

Members

PLX PERF_CMD_START
Starts the Performance Counters

PLX_PERF_CMD_STOP
Stops the Performance Counters

5-140

PLX_PORT TYPE

typedef enum _PLX_PORT_TYPE

PLX_PORT_UNKNOWN
PLX_PORT_ENDPOINT
PLX_PORT_NON_TRANS
PLX_PORT_LEGACY_ENDPOINT
PLX_PORT_ROOT_PORT
PLX_PORT_UPSTREAM
PLX_PORT_DOWNSTREAM
PLX_PORT_PCIE_TO_PCI_BRIDGE
PLX_PORT_PCI_TO_PCIE_BRIDGE
PLX_PORT_ROOT_ENDPOINT
PLX_PORT_ROOT_EVENT_COLL

} PLX_PORT_TYPE;

OxFF,
01
PLX_PORT_ENDPOINT, // NT port is an endpoint

POOO~NOU M

O-

Purpose

Enumerated type used for providing port type information.

Members
N/A

5-141

PLX_STATUS

typedef enum _PLX_ STATUS

ApiSuccess,
ApiFailed,
ApiNullParam,
ApiUnsupportedFunction,
ApiNoActiveDriver,
ApiConfigAccessFailed,
ApilnvalidDevicelnfo,
ApilnvalidDriverVersion,
ApilnvalidOffset,
ApilnvalidData,
ApilnvalidSize,
ApilnvalidAddress,
ApiInvalidAccessType,
ApiInvalidlndex,
ApilnvalidPowerState,
ApilnvalidlopSpace,
ApilnvalidHandle,
ApilnvalidPciSpace,
ApiInvalidBuslindex,
Api InsufficientResources,
ApiWaitTimeout,
ApiWaitCanceled,
ApiDmaChannelUnavailable,
ApiDmaChannelInvalid,
ApiDmaDone,
ApiDmaPaused,
ApiDmalnProgress,
ApiDmaCommandiInvalid,
ApiDmalnvalidChannelPriority,
ApiDmaSglPagesGetError,
ApiDmaSglPagesLockError,
ApiMuFifoEmpty,
ApiMuFifoFull,
ApiPowerDown,
ApiHSNotSupported,
ApiVPDNotSupported,
ApiDevicelnUse,
ApilLastError // Do not add APl errors below this line
} PLX_STATUS;

Purpose

Enumerated type used for providing PLX status codes for all PLX API functions

Members
N/A

5-142

PLX_SWITCH_MODE

typedef enum _PLX_SWITCH_MODE

PLX_SWITCH_MODE_STANDARD
PLX_SWITCH_MODE_MULTI_HOST
} PLX_SWITCH_MODE;

Purpose

Enumerated type used for providing mode switch is in.

Members

PLX_SWITCH_MODE_STANDARD
Switch is in standard single-host mode.

PLX_SWITCH_MODE_MULTI_HOST
Switch is in multi-host mode.

5-143

5.2.3 Data Structures

This section contains the enumerated data types used in the PLX API.

5-144

PLX_DEVICE_KEY

typedef struct _PLX DEVICE_KEY

us2 IsvValidTag;
us bus;

us slot;

us function;

ule Vendorld;

ule Deviceld;

ule SubVendorld;
ule SubDeviceld;
us Revision;

ule6 PIxChip;

us PIxRevision;
us Api Index;

us DeviceNumber;
PLX_API_MODE ApiMode;

ug PIxPort;
PLX_NT_PORT_TYPE NTPortType;
u3s2 ApiInternal[2];

} PLX_DEVICE_KEY;

Purpose

Uniquely identifies a PCI device in a system.

Members
IsValidTag

//
//

/7/

/7/
//
//
//
//

//
//

Magic number to determine validity
Physical device location

Device ldentifier

PLX chip type

PLX chip revision

Used internally by the API

Used internally by device drivers
Mode APl uses to access device
PLX port number of device

IT NT port, stores NT port type
Reserved for internal PLX APl use

Reserved for internal use by the PLX API, do not modify

bus
The PCI device bus number

slot
The PCI device slot number

function
The PCI device function number

Vendorld
The PCI device Vendor ID

Deviceld
The PCI device Device ID

SubVendorld
The PCI device subsystem Vendor ID

SubDeviceld
The PCI device subsystem Device ID

Revision
The PCI device revision

PIxChip
The PLX chip type. Will be 0 if non-PLX chip.

PIxRevision
The PLX chip revision

5-145

Apilndex
Reserved for internal use by the PLX API, do not modify

DeviceNumber
Reserved for internal use by PLX device drivers, do not modify

ApiMode
Mode the PLX API uses to access the device (e.g. PCI, I°C, TCP)

PIxPort
The PCI Express port number of the PLX device

bNTPortType
If the port is NT, specifies the NT port type (i.e. NT-Virtual or NT-Link side). Refer to PLX_NT_PORT_TYPE.

5-146

PLX_DEVICE_OBJECT

typedef struct _PLX_DEVICE_OBJECT

us2
PLX_DEVICE_KEY
PLX_DRIVER_HANDLE
PLX_PCI_BAR_PROP
Ue4
us
PLX_PHYSICAL_MEM
us2

} PLX_DEVICE_OBJECT;

Purpose

IsvValidTag;
Key;

hDevice;
PciBar|[6];
PciBarVva[6];
BarMapRef[6];
CommonBuffer;
Reserved[8];

//
//

//
/7/
/7/
//
//

Magic number to determine validity
Device location key identifier

Handle to driver

PCI BAR properties

For PCI BAR user-mode BAR mappings

BAR map count used by API

Used to store common buffer information
Reserved for future use

Opagque structure that describes a selected PCI device object.

Members

The members in this object should never be accessed directly. The structure definition may change in future
SDK versions and its members are reserved for internal use by the PLX APl and PLX drivers.

5-147

PLX_DMA_PARAMS
typedef struct _PLX DMA_ PARAMS

ue4 UserVa;

ue4 AddrSource;

ue4 AddrDest;

ue4 PciAddr;

u32 LocalAddr;

u32 ByteCount;

PLX_DMA_DIR Direction;

us bConstAddrSrc t1;

us bConstAddrDest :1;

us bForceFlush o

us blgnoreBlockint :1;
Purpose

Structure used to provide the parameters for a DMA transfer.

Members

UserVa
Specifies the virtual address of the user-mode buffer for the DMA transfer.

AddrSource (8600 DMA)
Specifies the source PCI address for a DMA block transfer.

AddrDest (8600 DMA)
Specifies the destination PCI address for a DMA block transfer.

PciAddr (9000 DMA)
Specifies the PCI address for a DMA block transfer. Can be 64-bit.

LocalAddr (9000 DMA)
The 32-bit local bus address for the DMA transfer.

ByteCount
The number of bytes to transfer.

Direction
Specifies the direction of the DMA transfer. Refer to PLX _DMA_DIR.

bConstAddrSrc (8600 DMA)
Specifies that the source PCI address should not be incremented

bConstAddrDest (8600 DMA)
Specifies that the destination PCI address should not be incremented

bForceFlush (8600 DMA)
Forces the DMA to use a write flush to ensure data in the final descriptor is written before the DMA engine
reports DMA completion.

blgnoreBlockint
Specifies to disable the DMA done interrupt for the transfer. Typically used if DMA done polling is desired to

eliminate the overhead of handling the DMA done interrupt. Applies only for DMA block mode transfers.

5-148

PLX_DMA_PROP

typedef struct _PLX_DMA PROP

// 8600 DMA properties

us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us

us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us

CplStatusWriteBack :1;
DescriptorMode :1;
DescriptorPollMode :1;
RingHal tAtEnd t1;
RingWrapDelayTime :3;
RelOrderDescrRead :1;
RelOrderDescrWrite :1;
RelOrderDataReadReq :1;
RelOrderDataWrite t1;
NoSnoopDescrRead t1;
NoSnoopDescrWrite t1;
NoSnoopDataReadReq :1;
NoSnoopDataWrite t1;
MaxSrcXferSize :3;
TrafficClass :3;
MaxPendingReadReq :6;
DescriptorPollTime;

MaxDescriptorFetch;

U16 ReadReqDelayClocks;

// 9000 DMA properties
Readylnput :1;
Burst e
Burstinfinite t1;
SglMode :1;
Donelnterrupt t1;
RoutelntToPci :1;
ConstAddrLocal :1;
WritelnvalidMode t1;
DemandMode :1;
EnableEOT :1;
FastTerminateMode :1;
ClearCountMode :1;
DualAddressMode t1;
EOTEndLink :1;
Val idMode :1;
Val idStopControl :1;
LocalBusWidth t2;
WaitStates 14;

} PLX_DMA_PROP;

Purpose

Structure used to configure the DMA channel properties. For all one-bit values, O=disable and 1=disable.

5-149

Members

8600 DMA

CplStatusWriteBack
In ring mode, determines whether DMA updates the first DWORD in a DMA descriptor to provide status
information and clear valid bit after the transfer has completed for that descriptor.
(0 = No write back, 1 = Update descriptor with status information)

DescriptorMode
Sets the DMA to Block or Ring/SGL mode. Refer to PLX_DMA_DESCR_MODE.

DescriptorPollMode
** Not available in current DMA hardware Reserved for future use, set to 0. **

RingHaltAtEnd
Determines whether DMA halts when it reaches end of ring or wraps back to beginning.
(0 =Wrap, 1 = Halt)

RingWrapDelayTime
If RingHaltAtEnd is disabled, determines the delay before the DMA wraps to the start of the ring. Refer to
PLX_DMA RING_DELAY_TIME

RelOrderDescrRead
Use PCle Relaxed Ordering for descriptor reads

RelOrderDescrWrite
Use PCle Relaxed Ordering for descriptor writes

RelOrderDataReadReq
Use PCle Relaxed Ordering for DMA data read requests

RelOrderDataWrite
Use PCle Relaxed Ordering for DMA data writes

NoSnoopDescrRead
Set TLP No Snoop for descriptor reads

NoSnoopDescrWrite
Set TLP No Snoop for descriptor writes

NoSnoopDataReadReq
Set TLP No Snoop for DMA read requests

NoSnoopDataWrite
Set TLP No Snoop for DMA data writes

MaxPendingReadReq
Determines the maximum number of pending DMA read requests from the source.

MaxSrcXferSize
Sets the maximum TLP read request size the DMA engine may request from the source address. Refer to
PLX_DMA_MAX_SRC_TSIZE.

TrafficClass
Sets the PCI Express Traffic Class used for DMA transfers

DescriptorPollTime
** Not available in current DMA hardware Reserved for future use, set to 0. **

MaxDescriptorFetch
Sets the maximum number of descriptors to prefetch at any given time

5-150

ReadReqDelayClocks
Sets the number of clocks between DMA data read requests. May be used to slow down DMA traffic.

9000 DMA

Readylnput
Enables the Ready input (READY#)

Burst
Enables bursting for the Local bus (Burst of 4LW if BurstlInfinite not enabled).

BurstInfinite
Enables the BTERM# input if set, which allows for infinite bursting. (Burst must also be set)

SglMode
Sets DMA to operate in Scatter-Gather List (SGL) mode

Donelnterrupt
Enables the DMA done interrupt

RoutelntToPci
Set the DMA interrupt to assert to the PCI side. If not set, DMA interrupt to assert on local-side.

ConstAddrLocal
Prevents the DMA engine from incrementing the local bus address

WritelnvalidMode
Enables PCI write and invalidate cycles for DMA transfers

DemandMode
Enables DMA Demand mode if set.

EnableEOT
Enables the DMA EOT# input pin

FastTerminateMode
Specifies the DMA termination mode. 0=Slow, 1=Fast

ClearCountMode
Enable SGL DMA transfer count clear mode if set. The DMA engine will clear the transfer count of each
descriptor once the data has been transferred for that descriptor.

DualAddressMode
Enables DMA dual address cycles for DMA transfers. In block mode, the upper 32-bits of the PCI address
are taken from the Dual Address Cycle register. In SGL mode, SGL descriptors become 5 DWORDs
instead of the standard 4 DWORDS for 32-bit transfers. The 5" DWORD in each descriptor specifies the
upper 32-bits of the PCI address, which will be loaded into the Dual-Address Cycle register.

EOTEnNdLink
Controls DMA descriptor processing when EOT# is asserted during a DMA SGL transfer. If set (=1), when
EOT# is asserted, the DMA controller halts the current SGL transfer and continues to the next descriptor. If
not set (=0), when EOT# is asserted, the DMA transfer halts the current SGL transfer, but does not continue
to the next descriptor.

ValidMode
Enables DMA descriptor valid mode. The DMA descriptor fetch will then only retrieve descriptors with the
valid bit set.

ValidStopControl
Controls whether the DMA engine continuously polls (=0) the current descriptor’s valid bit or halts the
descriptor fetch (=1) when an invalid descriptor is reached.

LocalBusWidth
Specifies the local bus width for DMA transfers. 0=8-bit, 1=16-hit, 2=32-bit

5-151

WaitStates
The wait states inserted after the address strobe and before the data is ready on the bus is defined with this
value.

5-152

PLX_DRIVER_PROP

typedef struct _PLX_DRIVER_PROP

char DriverName[16];
BOOLEAN blsServiceDriver;
ue4 AcpiPcieEcam;

us Reserved[40];

} PLX_DRIVER_PROP;

Purpose

Structure used to report properties of the selected PLX device driver.

Members

DriverName

Returns the string name of the PLX driver being used to access the selected device

blsServiceDriver

Returns TRUE if the PLX PCI/PCle Service driver is being used to access the device or FALSE otherwise.

AcpiPcieEcam

Returns the ACPI Enhanced Configuration Address Mechanism (ECAM) base address.

The ECAM is

specified in the PCI Express Specification and contains the memory mapped PCI configuration space for all
PCI devices in the system. PLX drivers utilize this region when PCI extended configuration registers are
accessed (offsets 100h & above). PLX drivers probe ACPI tables in the system to determine this address.

5-153

PLX_INTERRUPT

typedef struct _PLX_INTERRUPT

U32 Doorbell; // Up to 32 doorbells

U8 PciMain :1;

U8 PciAbort :1;

U8 LocalToPci t2; // Local->PCl int 1 & 2

U8 DmaDone 24; // DMA channel 0-3 interrrupts
U8 DmaPauseDone 24;

U8 DmaAbortDone :4;

U8 DmalmmedStopDone :4;

U8 DmalnvalidDescr :4;

U8 DmaError t4;

U8 MulnboundPost :1;

U8 MuOutboundPost :1;

U8 MuOutboundOverflow :1;

U8 TargetRetryAbort t1;

U8 Message 24; // 6000 NT 0-3 message interrupts
U8 Swinterrupt t1;

U8 ResetDeassert t1;

U8 PmeDeassert t1;

U8 GPIO_4 5 :1;

U8 GPIO 14 15 :1;

U8 NTV_LE_ Correctable :1; // NT Virtual - Link-side Error interrupts

U8 NTV_LE Uncorrectable :1;
U8 NTV_LE LinkStateChange :1;

U8 NTV_LE_UncorrErrorMsg :51; U8 HotPlugAttention t1;
U8 HotPlugPowerFault o
U8 HotPlugMrilSensor :1;
U8 HotPlugChangeDetect :1;
U8 HotPlugCmdCompleted :1;

} PLX_INTERRUPT;

Purpose

Contains the supported PLX device interrupts used to return active interrupts, enable/disable interrupts, or
select certain interrupts. For all one-bit values, O=disable and 1=disable.

For multi-bit interrupts, interrupt numbers are associated with bit positions. For example, the DmaDone field is
4 bits, representing up to 4 DMA channel done interrupts. Bit 0 = Channel 0, Bit 1 = Channel 1, Bit 2 = Channel
2, & Bit 3 = Channel 3.

Members

Doorbell
Represents up to 32 (0> 31) doorbell interrupts

PciMain
Represents the main PCl interrupt line. This field is only used in interrupt enable/disable API functions.

PciAbort
Represents the PCI abort interrupt.

LocalToPci
Represents the generic Local>PCl interrupts (bit 0 = L>P #1, bit 1 = L>P #2)

DmaDone
Represents the DMA channel transfer complete interrupts (bit 0=Ch 0, bil=Ch 1, etc)

5-154

DmaPauseDone
Represents the DMA pause complete interrupts (bit 0=Ch 0, bi1l=Ch 1, etc)

DmaAbortDone
Represents the DMA abort complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmalmmedStopDone
Represents the DMA immediate pause/stop complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmalnvalidDescr
Represents the DMA invalid descriptor detected interrupts (bit 0=Ch 0, bil=Ch 1, etc)

DmagError
Represents the general DMA error interrupts (bit 0=Ch 0, bil=Ch 1, etc)

MulnboundPost
Represents the messaging unit’s inbound post FIFO interrupt

MuOutboundPost
Represents the messaging unit’s outbound post FIFO interrupt

MuOutboundOverflow
The value represents the messaging unit's outbound FIFO overflow interrupt

TargetRetryAbort
Represents the PLX chip’s Target Abort interrupt after 256 Master consecutive retries to the target

Message
For 6254/6540/6466 NT mode, represents the four message interrupts (bit 0=Msg 0, bit 1=Msg 1, etc.)

Swinterrupt
Represents the Software-triggered interrupt of PLX 9000 slave devices (9050/9052/9030)

ResetDeassert
For 6254/6540/6466, represents S_RSTIN# or P_RSTIN# de-assertion interrupt

PmeDeassert
For 6254/6540/6466, represents S_PME# or P_PME# de-assertion interrupt

GPIO_4 5
For 6254/6540/6466, represents GP104 (primary-side) or GPIO5 (secondary-side) interrupt

GPIO_14_15
For 6254/6540/6466, represents GP1014 (primary-side) or GPIO15 (secondary-side) interrupt

NT_LE_Correctable
(8000-series NT Virtual side) NT Link interface detected a correctable TLP error

NT_LE_Uncorrectable
(8000-series NT Virtual side) NT Link interface detected an uncorrectable TLP error

NT_LE_LinkStateChange
(8000-series NT Virtual side) Link interface link state changed (Link Down or Link Up)

NT_LE_UncorrErrorMsg
(8000-series NT Virtual side) Link interface received and uncorrectable error message TLP

HotPlugAttention
Represents the Hot Plug Attention button pressed interrupt.

HotPlugPowerFault
Represents the Hot Plug Power Fault interrupt

HotPlugMriSensor
Represents the Hot Plug MRL Sensor interrupt

5-155

HotPlugChangeDetect
Represents the Hot Plug Change Detected interrupt

HotPlugCmdCompleted
Represents the Hot Plug Command Completed interrupt

5-156

PLX_MULTI_HOST_PROP

typedef struct _PLX_MULTI_HOST_PROP

u8 SwitchMode;

uie VS_EnabledMask;

us VS_UpstreamPortNum[8];
u32 VS_DownstreamPorts[8];

BOOLEAN blsMgmtPort;
BOOLEAN bMgmtPortActiveEn;

us MgmtPortNumActive;
BOOLEAN bMgmtPortRedundantEn;
us MgmtPortNumRedundant;

} PLX_MULTI_HOST_PROP;

Purpose

Contains properties of PLX multi-root switches.

Members

SwitchMode
Current switch mode. Refer to PLX_SWITCH_MODE.

VS_EnabledMask
Bit for each enabled Virtual Switch

VS_UpstreamPortNum
Upstream port number of each Virtual Switch

VS_DownstreamPorts
Downstream ports associated with a Virtual Switch

bilsMgmtPort
Specifies whether the selected port is the management port. Will always be TRUE in standard host mode.
In Multi-host mode, properties are only available through the management port; otherwise, they are invalid.

bMgmtPortActiveEn
Specifies whether the active management port is enabled

MgmtPortNumActive
Active management port number

bMgmtPortRedundantEn
Specifies whether the redundant management port is enabled

MgmtPortNumRedundant
Redundant management port number

5-157

PLX_MODE_PROP

typedef struct _PLX MODE_PROP

union

{

struct

Ul6 l12cPort;

Ul6 SlaveAddr;

U32 ClockRate;
} 12c;

struct
{

U64 IpAddress;
} Tcp;

} PLX_MODE_PROP;

Purpose

Used to provide API mode properties for finding/selecting a device.

Members

12c.12cPort
Contains the port number for the 1°C USB device to use. For Aardvark I°C, starts at ‘0".

I2c.SlaveAddr
The 1°C bus address assigned to the PLX chip to access.

I2c.ClockRate
Specifies the I°C clock rate in KHz

Tcp.lpAddress
Specifies the TCP IP address of the device to access (not currently supported)

5-158

PLX_NOTIFY_OBJECT
typedef struct _PLX_NOTIFY_OBJECT

U32 IsvalidTag; // Magic number to determine validity
U64 pWaitObject; // -- INTERNAL -- Wait object used by the driver
U64 hEvent; // User event handle (HANDLE can be 32 or 64 bit)

} PLX_NOTIFY_OBJECT;

Purpose

Opague structure that used for interrupt notification functions

Members

The members in this object should never be accessed directly. The structure definition may change in future
SDK versions and its members are reserved for internal use by the PLX APl and PLX drivers.

5-159

PLX_PCl_BAR_PROP
typedef struct PLX_PCI_BAR_PROP

u32 BarValue;
ue4 Physical;
ue4 Size;

BOOLEAN bloSpace;
BOOLEAN bPrefetchable;
BOOLEAN b64bit;

} PLX _PCI_BAR_PROP;

Purpose
This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members

BarValue
Actual value in the PCI BAR register

Physical
The physical address assigned to the BAR

Size
The size of the BAR space

bloSpace
TRUE if the BAR space is type 1/0O; FALSE if BAR space is type Memory

bPrefetchable
TRUE if the BAR space is configured as Prefetchable; FALSE if not

b64bit
TRUE if the BAR is a 64-bit space; FALSE if it is 32-bit

5-160

PLX_PERF_PROP

typedef struct _PLX PERF_PROP
U32 IsvalidTag; // Magic number to determine validity

// Port properties
U8 PortNumber;

U8 LinkWidth;

U8 LinkSpeed;

U8 Station;

U8 StationPort;

// Ingress counters

U32 IngressPostedHeader;
U32 IngressPostedDW;

U32 IngressNonpostedDW;
U32 IngressCplHeader;
U32 IngressCplDW;

U32 IngressDIlp;

U32 IngressPhy;

// Egress counters

U32 EgressPostedHeader;
U32 EgressPostedDW;

U32 EgressNonpostedDW;
U32 EgressCplHeader;
U32 EgressCplDW;

U32 EgressDIIp;

U32 EgressPhy;

// Previous Ingress counters
U32 Prev_lIngressPostedHeader;
U32 Prev_lIngressPostedDW;

U32 Prev_IngressNonpostedDW;
U32 Prev_lIngressCplHeader;
U32 Prev_IngressCplDW;

U32 Prev_lIngressDIlp;

U32 Prev_lIngressPhy;

// Previous Egress counters
U32 Prev_EgressPostedHeader;
U32 Prev_EgressPostedDW;

U32 Prev_EgressNonpostedDW;
U32 Prev_EgressCplHeader;
U32 Prev_EgressCplDW;

U32 Prev_EgressDIlp;

U32 Prev_EgressPhy;

}

Purpose

Used to store the current and previous performance counters obtained from the PLX chip.

Members

These members are not documented because they are reserved for internal use by PLX software tools.

5-161

PLX_PERF_STATS

typedef struct _|

S64

long double
S64

S64

S64

S64

S64

S64

S64

double

long double
long double

S64

long double
S64

S64

S64

S64

S64

S64

S64

double

long double
long double

}

Purpose

PLX_PERF_PROP

IngressTotalBytes; //
IngressTotalByteRate; //
IngressCplAvgPerReadReq; //
IngressCplAvgBytesPerTlp; //
IngressPayloadReadBytes; //
IngressPayloadReadBytesAvg; //
IngressPayloadWriteBytes; //
IngressPayloadWriteBytesAvg;//
IngressPayloadTotalBytes; //
IngressPayloadAvgPerTlp; //

IngressPayloadByteRate; //
IngressLinkUtilization; //
EgressTotalBytes; //
EgressTotalByteRate; //
EgressCplAvgPerReadReq; //
EgressCplAvgBytesPerTlp; //
EgressPayloadReadBytes; //

EgressPayloadReadBytesAvg; //
EgressPayloadWriteBytes; //
EgressPayloadWriteBytesAvg; //
EgressPayloadTotalBytes; //
EgressPayloadAvgPerTlp; //
EgressPayloadByteRate; //
EgressLinkUtilization; //

Total bytes including overhead
Total byte rate

Avg completion TLPs per read req
Avg bytes per completion TLP
Payload bytes read (Cpl TLPs)

Avg read payload bytes (Cpl TLPs)
Payload bytes written (Posted TLPs)
Avg write payload bytes (P. TLPs)
Payload total bytes

Payload average size per TLP
Payload byte rate

Total link utilization

Total byte including overhead
Total byte rate

Avg completion TLPs per read req
Avg bytes per completion TLPs
Payload bytes read (Cpl TLPs)

Avg read payload bytes (Cpl TLPs)
Payload bytes written (Posted TLPs)
Avg write payload bytes (P. TLPs)
Payload total bytes

Payload average size per TLP
Payload byte rate

Total link utilization

Used to store the calculated performance values for a particular port

Members

These members are not documented because they are reserved for internal use by PLX software tools.

5-162

PLX_PHYSICAL_MEM
typedef struct _PLX_PHYSICAL_MEM

U64 UserAddr;
U64 PhysicalAddr;
U64 CpuPhysical;
U32 Size;

} PLX_PHYSICAL_MEM;

Purpose

This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members

UserAddr
User Virtual Address for the buffer

PhysicalAddr
The Bus or Logical Physical address of the buffer. This address may be used to program the DMA engine.

CpuPhysical
The CPU Physical address of the buffer. This value is used internally by the PLX driver for mappings to
user space.

Size
The size of the buffer.

Notes

The CPU address is the physical address from the point of view of the CPU. The Bus or Logical physical
address is the address from the point of view of a device. The bus address should be used when programming
PCI addresses in hardware (e.g. DMA controllers). On x86 platforms, CPU and Logical addresses are the same
because no I/O Memory Management Unit (IOMMU) exists on these systems. On other platforms, the CPU
address may not be equal to the Logical address.

PLX software already includes placeholders for the various addresses. If the correct field is used when code is
written, applications should work properly on all target platforms, regardless of whether an IOMMU exists or not.

5-163

PLX_PORT_PROP
typedef struct _PLX PORT_PROP

us PortType;

us PortNumber;

us LinkWidth;

us MaxLinkWidth;
us LinkSpeed;

us MaxLinkSpeed;
uie MaxPayloadSize;
uie MaxReadReqSize;

BOOLEAN bNonPcieDevice;
} PLX _PORT_PROP;

Purpose

Structure used to report PCI Express port properties.

Members

PortType
Contains the port type (refer to PLX_PORT_TYPE)

PortNumber
Contains the port number

LinkWidth
Specifies the negotiated link width

MaxLinkWidth
Specifies the maximum link width the device is capable of

LinkSpeed
Specifies the negotiated link speed (1 = 2.5 Ghps, 2 =5 Gbps)

MaxLinkSpeed
Specifies the maximum link speed the device is capable of

MaxPayloadSize
Specifies the maximum TLP payload size supported by the device

MaxReadRegSize
Specifies the maximum amount of data the device may request in a single PCI Express read packet

bNonPcieDevice
Flag to specify whether the device is not a PCl Express device (i.e. does not support PCI Express
Capability)

5-164

PLX_VERSION
typedef struct _PLX_ VERSION

PLX_API_MODE ApiMode;

union

{

struct

{
Ul6 ApilLibrary;
Ul6e Software;
Ul6é Firmware;
Ul6 Hardware;
Ul6é SwReqByFw;
Ul6é FwReqBySw;
Ul6 ApiReqBySw;
U32 Features;

} 12c;

} PLX_VERSION;

Purpose

Structure used to report version information. All 16-bit version numbers are in the format (Major << 8) | (Minor).
For example, the number 0114h = v1.20.

Members

ApiMode
Contains the ApiMode that the version information is for. This determines which union in the structure is
contains valid information. (Refer to PLX_API_MODE)

I2c.ApiLibrary
Version of the 12C API libraray

I12c.Software
Version of the 12C software

I12c.Firmware
Version of the firmware in the 12C USB device

I2c.Hardware
Version of the 12C USB hardware

I12c.SwReqByFw

Firmware requires that software version must be >= this version
I2c.ApiReqBySw

Software requires that the API version must be >= this version

I2c.Features
Bitmask of features supported by the device. At the time of this writing, these are the features:

#define AA_FEATURE_SPI 0x00000001
#define AA_FEATURE_I2C 0x00000002
#define AA_FEATURE_GPIO 0x00000008

#define AA_FEATURE_I2C_MONITOR 0x00000010

5-165

	PLX SDK User Manual
	Table of Contents
	1 General Information
	1.1 About this Manual
	1.2 PLX SDK Features
	1.3 Terminology
	1.4 Customer Support

	2 Getting Started
	2.1 Development Tools
	2.2 PLX SDK Version Compatibility
	2.3 Installation & Removal of the PLX SDK
	2.3.1 Installation in a Microsoft Windows Environment
	2.3.2 Removing Previous Versions of the PLX SDK

	2.4 Installation of PLX Device Drivers in Windows
	2.4.1 PLX Plug and Play Device Driver Installation
	2.4.1.1 PLX Device Driver Installation
	2.4.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs

	2.4.2 PLX PCI/PCIe Service Driver Installation
	2.4.2.1 Starting and Stopping the PLX Service Driver

	2.4.3 Modifying PLX Driver Options in the Registry
	2.4.3.1 PLX Driver Options Wizard

	2.5 Installation of PLX Device Drivers in Linux
	2.6 Distribution of PLX Software
	2.6.1 License Agreement
	2.6.2 Windows Distribution Steps

	3 PLX Host-side Software
	3.1 SDK Directory Structure
	3.2 PLX SDK Architectural Overview
	3.3 PLX API Library
	3.4 Device Drivers
	3.4.1 PLX Device Driver Directory Structure
	3.4.2 Building Windows Device Drivers

	3.5 User-mode Applications
	3.5.1 PLX Sample Applications
	3.5.2 Creating Windows PCI Host Applications

	4 PLX Debug Utilities
	4.1 PLX PEX Device Editor (PDE)
	4.2 PLXMon
	4.2.1 PLXMon Access Modes
	4.2.1.1 PCI Mode
	4.2.1.2 EEPROM File Edit Mode
	4.2.1.3 Serial Mode

	4.2.2 PLXMon Toolbar
	4.2.3 Working with PLXMon Dialogs
	4.2.3.1 Register Dialogs
	4.2.3.2 EEPROM Dialogs
	4.2.3.3 Memory Access Dialog

	4.2.4 Specifying PLX Chip Type for Unknown Devices
	4.2.5 Performance Measure Dialog
	4.2.5.1 Notes before Using the Performance Measure
	4.2.5.2 Performance Measure Options
	4.2.5.3 DMA Performance Test
	4.2.5.4 Direct Slave Performance Test

	4.2.6 The Command-Line Interface
	4.2.7 Working with Virtual Addresses
	4.2.8 Command-Line Variables

	5 PLX SDK API Reference
	5.1 PLX API Functions
	PlxPci_ApiVersion
	PlxPci_ChipTypeGet
	PlxPci_ChipTypeSet
	PlxPci_CommonBufferProperties
	PlxPci_CommonBufferMap
	PlxPci_CommonBufferUnmap
	PlxPci_DeviceClose
	PlxPci_DeviceOpen
	PlxPci_DeviceFind
	PlxPci_DeviceFindEx
	PlxPci_DeviceReset
	PlxPci_DmaChannelOpen
	PlxPci_DmaChannelClose
	PlxPci_DmaGetProperties
	PlxPci_DmaSetProperties
	PlxPci_DmaControl
	PlxPci_DmaStatus
	PlxPci_DmaTransferBlock
	PlxPci_DmaTransferUserBuffer
	PlxPci_DriverProperties
	PlxPci_DriverScheduleRescan
	PlxPci_DriverVersion
	PlxPci_EepromPresent
	PlxPci_EepromProbe
	PlxPci_EepromCrcGet
	PlxPci_EepromCrcUpdate
	PlxPci_EepromSetAddressWidth
	PlxPci_EepromReadByOffset
	PlxPci_EepromWriteByOffset
	PlxPci_EepromReadByOffset_16
	PlxPci_EepromWriteByOffset_16
	PlxPci_GetPortProperties
	PlxPci_GetI2cPorts
	PlxPci_I2cVersion
	PlxPci_IoPortRead
	PlxPci_IoPortWrite
	PlxPci_InterruptDisable
	PlxPci_InterruptEnable
	PlxPci_MailboxRead
	PlxPci_MailboxWrite
	PlxPci_MH_GetProperties
	PlxPci_MH_MigratePorts
	PlxPci_NotificationCancel
	PlxPci_NotificationRegisterFor
	PlxPci_NotificationStatus
	PlxPci_NotificationWait
	PlxPci_PciBarSpaceRead
	PlxPci_PciBarSpaceWrite
	PlxPci_PciBarMap
	PlxPci_PciBarProperties
	PlxPci_PciBarUnmap
	PlxPci_PciRegisterRead
	PlxPci_PciRegisterWrite
	PlxPci_PciRegisterReadFast
	PlxPci_PciRegisterWriteFast
	PlxPci_PciRegisterRead_BypassOS
	PlxPci_PciRegisterWrite_BypassOS
	PlxPci_PerformanceCalcStatistics
	PlxPci_PerformanceGetCounters
	PlxPci_PerformanceInitializeProperties
	PlxPci_PerformanceMonitorControl
	PlxPci_PerformanceResetCounters
	PlxPci_PhysicalMemoryAllocate
	PlxPci_PhysicalMemoryFree
	PlxPci_PhysicalMemoryMap
	PlxPci_PhysicalMemoryUnmap
	PlxPci_PlxRegisterRead
	PlxPci_PlxRegisterWrite
	PlxPci_PlxMappedRegisterRead
	PlxPci_PlxMappedRegisterWrite
	PlxPci_VpdRead
	PlxPci_VpdWrite

	5.2 PLX API Data Structures and Types
	5.2.1 Standard Data Types
	5.2.1.1 Code Portability Macros

	5.2.2 Enumerated Types
	PLX_ACCESS_TYPE
	PLX_API_MODE
	PLX_DMA_COMMAND
	PLX_DMA_DESCR_MODE
	PLX_DMA_RING_DELAY_TIME
	PLX_DMA_DIR
	PLX_DMA_MAX_SRC_TSIZE
	PLX_EEPROM_STATUS
	PLX_NT_PORT_TYPE
	PLX_PERF_CMD
	PLX_PORT_TYPE
	PLX_STATUS
	PLX_SWITCH_MODE

	5.2.3 Data Structures
	PLX_DEVICE_KEY
	PLX_DEVICE_OBJECT
	PLX_DMA_PARAMS
	PLX_DMA_PROP
	PLX_DRIVER_PROP
	PLX_INTERRUPT
	PLX_MULTI_HOST_PROP
	PLX_MODE_PROP
	PLX_NOTIFY_OBJECT
	PLX_PCI_BAR_PROP
	PLX_PERF_PROP
	PLX_PERF_STATS
	PLX_PHYSICAL_MEM
	PLX_PORT_PROP
	PLX_VERSION

