Here are the fitted values by METAS VNA Tools for the entire 0~18GHz range.
The Applied EM kit is only specified up to 10GHz though, so this is just for educational purposes and not a commentary about the kit quality

(I'll do a proper 0~10GHz version in my next post)
Results have been plotted in Mathematica with equations from Keysight application note 1287-11 "Specifying Calibration Standards and Kits".
"Given" values are those included with the Applied EM kit (as reported
here), while "Fitted" are those VNA Tools generated
| Short F | Offset Z0 (Ω) | Offset delay (ps) | Offset loss (GΩ⋅s-1) | L0 (10-12 H) | L1 (10-24 H⋅Hz-1) | L2 (10-33 H⋅Hz-2) | L3 (10-42 H⋅Hz-3) |
| Given | 51.56 | 83.61 | 2.57 | -889.07 | 9989.25 | 9983.11 | -1413.8 |
| Fitted | 51.524 | 81.139 | 6.2800 | -909.96 | 111076 | -14204 | 340.48 |
| Open F | Offset Z0 (Ω) | Offset delay (ps) | Offset loss (GΩ⋅s-1) | C0 (10-15 F) | C1 (10-27 F⋅Hz-1) | C2 (10-36 F⋅Hz-2) | C3 (10-45 F⋅Hz-3) |
| Given | 50 | 76.37 | 1.96 | -351.35 | -3947 | 1326.61 | -507.08 |
| Fitted | 53.549 | 67.442 | 2.7871 | 46.597 | -90050 | 10138 | -358.16 |
| Load F | Offset Z0 (Ω) | Offset delay (ps) | Offset loss (GΩ⋅s-1) |
| Given | 54.16 | 4.77 | 10 |
| Fitted | 54.253 | 8.4764 | -11.561 |
P.S., Equations from Keysight application note 1287-11 converted to Mathematica form
Zr = Quantity[50, "Ohms"];
(* Equations 1.1 and 1.4 *)
\[Gamma]l = \[Alpha]l + I \[Beta]l;
\[CapitalGamma]1 = (Zc - Zr)/(Zc + Zr);
\[CapitalGamma]T = (ZT - Zr)/(ZT + Zr);
\[CapitalGamma]i = (\[CapitalGamma]1 (1 - Exp[-2 \[Gamma]l] - \[CapitalGamma]1 \[CapitalGamma]T) + Exp[-2 \[Gamma]l] \[CapitalGamma]T)/(1 - \[CapitalGamma]1 (Exp[-2 \[Gamma]l] \[CapitalGamma]1 + \[CapitalGamma]T (1 - Exp[-2 \[Gamma]l])));
(* Equation 1.10 *)
\[Alpha]l = (offsetLoss offsetDelay/(2 offsetZ0)) Sqrt[f/Quantity["Gigahertz"]];
\[Beta]l = 2 \[Pi] f offsetDelay + \[Alpha]l;
Zc = offsetZ0 + (1 - I) (offsetLoss/(4 \[Pi] f)) Sqrt[f/Quantity["Gigahertz"]];
(* Equations 1.12 and 1.13 *)
ZS = I 2 \[Pi] f (L0 + L1 f + L2 f^2 + L3 f^3);
ZO = 1/(I 2 \[Pi] f (C0 + C1 f + C2 f^2 + C3 f^3));
(* Example usage with OPEN parameters *)
\[CapitalGamma]i /. ZT -> ZO /. {
C0 -> Quantity[46.597 10^-15, "Farads"],
C1 -> Quantity[-90050 10^-27, "Farads"/"Hertz"],
C2 -> Quantity[10138 10^-36, "Farads"/"Hertz"^2],
C3 -> Quantity[-358.16 10^-45, "Farads"/"Hertz"^3],
offsetDelay -> Quantity[67.442, "Picoseconds"],
offsetLoss -> Quantity[2.7871, "Gigaohms"/"Seconds"],
offsetZ0 -> Quantity[53.549, "Ohms"],
f -> Quantity[f, "Gigahertz"]
};
S11 = % /. Cases[Variables[%], v_ /; Head[v] =!= Quantity -> v -> Quantity[v, "DimensionlessUnit"]] /. {
Quantity[v_, "DimensionlessUnit"] :> v,
Quantity[v_, 1/"DimensionlessUnit"] :> v,
Quantity[v_, Sqrt["DimensionlessUnit"]] :> v
};
Plot[Abs[S11], {f, 0, 18}, AxesLabel -> {"Frequency (GHz)", "|S₁₁|"}]