Author Topic: Old Philips Fluke 97 / 96B (maybe others?)  (Read 50348 times)

0 Members and 2 Guests are viewing this topic.

Offline Hairystuff

  • Contributor
  • Posts: 14
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #125 on: December 16, 2019, 09:20:59 am »
I suspected that when I saw the first part empty, I did test the chip to see if it could be written to and read from reliably and it seems to be ok in that aspect, I remember it working fine before I stored it away, after a year I put it on charge and thats when I noticed it had stopped working, I think the battery may have leaked and shorted the 12v flash enable connectors in the battery compartment which might have caused the flash chip to erase, that's the only thing I can think of that could have caused it, I have searched high and low for a backup of the flash chip content but have had no luck at all.
 

Offline jellytot

  • Contributor
  • Posts: 37
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #126 on: January 11, 2020, 03:03:56 pm »
is anybody intending to dump the flash's to create a repository somewhere??

Dumps from scopemeter PM97 Philips Firmware V3.15  91-11-21
verified working. Not sure if this in breach of rules, copyright etc? if so please just delete, remove. I mean its nearly 30 years old! provided for educational purposes and to aid recycling and saving the environment  :)
 
The following users thanked this post: lyonsk

Offline lyonsk

  • Contributor
  • Posts: 20
  • Country: sk
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #127 on: January 12, 2020, 08:23:09 pm »
Thanks jellytot!

Could you please let me know how did you manage to download it? Did you need to desolder the chips?

Regards,
Tomas
 
The following users thanked this post: harrimansat

Offline jellytot

  • Contributor
  • Posts: 37
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #128 on: January 12, 2020, 09:04:24 pm »
Hi Tomas. Yes I desoldered with hot air wand. Read with a minipro TL866A.
Do you by any chance have later Firmware? I think if I had a dump with newer firmware I could recalibrate it
 

Offline lyonsk

  • Contributor
  • Posts: 20
  • Country: sk
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #129 on: January 13, 2020, 09:32:22 pm »
Unfotunately no..  Mine is the same like yours... there is a screenshot of my screen on the previous page.

It would be great to download the bootloader from the CPU. If that is disassembled we could download and upload firmware using serial cable and perhaps some volunteer would download the new version and share it...

How many free calibration slots are left in your device? I mean in the firmware you shared...

Thanks.
 

Offline jellytot

  • Contributor
  • Posts: 37
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #130 on: January 14, 2020, 01:07:09 pm »
Not sure how many slots are left?
It would be handy if there was a way to back up
calibration data via the ir interface. Maybe someone
will come along with another peice of the jigsaw  :)
 

Offline jellytot

  • Contributor
  • Posts: 37
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #131 on: January 15, 2020, 11:45:19 am »
Hi Tomas. I read your post regarding calibration slot checking and I can confirm there is 2 available. So at least these dumps will allow
a system recovery, then a recalibration to be performed  ;)
 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #132 on: March 03, 2020, 07:22:52 pm »
Hi, I have a FLUKE97, I can´t locate this board in service manual. There is more services manuals for these scopes?
 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #133 on: March 04, 2020, 07:59:47 pm »
Fluke                                                       MET/CAL Procedure
=============================================================================
INSTRUMENT:            Fluke 93 ScopeMeter: CAL ADJ RS-232 /5500+SC300
INSTRUMENT:            Fluke 95 ScopeMeter: CAL ADJ RS-232 /5500+SC300
INSTRUMENT:            Fluke 97 ScopeMeter: CAL ADJ RS-232 /5500+SC300
INSTRUMENT:            Fluke 97/AUTO ScopeMeter: CAL ADJ RS-232 /5500+SC300
DATE:                  20-Aug-98
AUTHOR:                Fluke Corporation
REVISION:              $Revision: 1.5 $
ADJUSTMENT THRESHOLD:  70%
NUMBER OF TESTS:       2
NUMBER OF LINES:       462
CONFIGURATION:         Fluke 5500A (SC)
=============================================================================
#
# Source:
#   Service Manual: Fluke Scopemeter 93/95/97, chapter 5
#
# Compatibilty:
#   5500/CAL or MET/CAL version 4.1 and later
#
# Required Files:
#   55_9xa  .bmp       5500 NORMAL to ScopeMeter Ch.A
#   55_9xae .bmp       5500 NORMAL to ScopeMeter Ch.A and Ext/mV
#   55_9xe  .bmp       5500 NORMAL to ScopeMeter Ext/mV
#   9x_a2pcb.bmp       Adj location for 92-99 a2 pcb
#   9x_c1a  .bmp       1X probe cal Ch.A
#   9x_c1b  .bmp       1X probe cal Ch.B
#   9x_c10a .bmp       10X probe cal Ch.A
#   9x_c10b .bmp       10X probe cal Ch.B
#   9x_short.bmp       ScopeMeter zero adj
#   cal9x_1 .bmp       Instructions for cal free query (series 1 only)
#   cal9x_2 .bmp       Instructions for cal store (series 1 only)
#   sc_9xab .bmp       5500 SCOPE to ScopeMeter Ch.A and Ch.B
#   sc_9xae .bmp       5500 SCOPE to ScopeMeter Ch.A and Ext/mV
#   sc_9xat .bmp       5500 SCOPE to ScopeMeter Ch.A, terminated 50 ohms
#
# System Specifications:
#   TUR calculations are based on specification interval of the accuracy file
#   The default accuracy files contains 90 day specs.
#
#   Fluke make no warranty, expressed or implied, as to the fitness or
#   suitability of this procedure in the customer application.
#
 STEP    FSC    RANGE NOMINAL        TOLERANCE     MOD1        MOD2  3  4 CON
  1.001  ASK-   R     N                                           F        W
# To enable adjustment, you have to apply the +12V programming voltage
  1.002  DISP         NOTE:
  1.002  DISP         Apply +12V programming voltage
  1.002  DISP         to the programming contacts
  1.002  DISP         in the battery compartment.
# Setup RS232-communication
  1.003  PORT         [P1200,N,8,1,X]
# Identify ScopeMeter test tool: M[1] = model number
#                                M[2] = software version
  1.004  PORT         ID[13][I$]
  1.005  MATH         M[1] = FLD(MEM2,1,";")
  1.006  MATH         M[2] = FLD(MEM2,2,";")

  1.007  MATH         MEM1=M[1]-93
  1.008  JMPZ         1.014
  1.009  MATH         MEM1=M[1]-95
  1.010  JMPZ         1.014
  1.011  MATH         MEM1=M[1]-97
  1.012  JMPZ         1.014
# Exit if it is not a ScopeMeter 93, 95, 97, or 97auto
  1.013  JMP          2.281
  1.014  MATH         MEM1 = M[2]-4.999
  1.015  JMPF         1.021

# Query Scopemeter Cal Fields ! Version 5 and above only
# returns Total Cal Fields, # Free
  1.016  PORT         QN[13][I$]
  1.017  MATH         MEM1 = FLD(MEM2, 2, ",")
# MEM1 contains the number of free spaces in the FlashROM (2, 1 or 0)
# If MEM1=0 then the MET/CAL procedure must be stopped
# and the ScopeMeter test tool must be refreshed first.
# If MEM1=1 or MEM1=2 then 1 or 2 places in FlashROM are free
# for storing calibration data, so program can continue.
  1.018  JMPT         2.002
# Not enough space: terminate adjustment procedure
  1.019  DISP         Not enough space in FlashROM to store
  1.019  DISP         new calibration data,
  1.019  DISP         Calibration Adjustment Procedure terminated.
  1.019  DISP         First use the "REFRESH" software to
  1.019  DISP         refresh the ScopeMeter test tool.
  1.020  JMP          2.281

# Query Scopemeter Cal Fields ! Version 3 and 4 only
# This must be preformed manualy. Version 3 and 4 instruments do not support
# the automated query.
  1.021  PORT         PS1,FF3B025F00CF3E10002C000001000300090000020000008A008
  1.021  PORT         000000274002221376611021A0010A680808080808080808080800F
  1.021  PORT         AA000E0A1F240000000100000200020000000000000000000000000
  1.021  PORT         00000000000000000000000000000045830EB2F0000000000000000
  1.021  PORT         0000000000000000[13]
  1.022  PICE         cal9x_1
  2.001  JMPF         2.281

# Check if any hardware repairs have been done: if not, you may skip
# step 1 up to 4
  2.002  OPBR         Have any components been replaced?
  2.002  OPBR         (Note: the hardware adjustments may be skipped
  2.002  OPBR         unless the ScopeMeter test tool has been repaired.
  2.002  OPBR         If adjustments S6, S7, S8 or S9 fail, also
  2.002  OPBR         restart the MET/CAL procedure and perform H1...H4.)
  2.003  JMPT         2.005
  2.004  JMP          2.030
  2.005  HEAD         Adj H1: HARDWARE PULSE RESPONSE *1 ATTENUATOR
  2.006  DISP         Open up the case of the ScopeMeter test tool.
  2.006  DISP         Refer to chapter 6 of the Service Manual
  2.006  DISP         for detailed instructions.
  2.007  PIC          sc_9xab
# enable service mode, power can have been removed at opening the case
  2.008  PORT         EX110,0[13][D200]FLUKPHIL[13]
  2.009  PORT         EX100,1[13]
  2.010  5500         200mVpp                      1kH            ZQ SC S
  2.011  PIC          9x_a2pcb (21,56,LBL/M) "<- Adjust C2209 for  "
  2.011  PIC          (22,56,LBL/M) "   optimum channel A "
  2.011  PIC          (23,56,LBL/M) "   pulse response    "
  2.011  PIC          (2,57,LBL/M) "<- Adjust C2109 for  "
  2.011  PIC          (3,57,LBL/M) "   optimum channel B "
  2.011  PIC          (4,57,LBL/M) "   pulse response    "
  2.011  PIC          (21,3,C/B) "Hardware SCOPE adjustment H1      "
  2.011  PIC          (22,3,C/B) "Analog A2 PCB, SMD components side"
  2.012  HEAD         Adj H2: HARDWARE PULSE RESPONSE *10 ATTENUATOR
  2.013  PORT         EX100,2[13]
  2.014  5500         2Vpp                         1kH            ZQ SC S
  2.015  PIC          9x_a2pcb (17,62,LBL/M) "<- Adjust C2207"
  2.015  PIC          (18,62,LBL/M) "   for optimum "
  2.015  PIC          (19,62,LBL/M) "   channel A   "
  2.015  PIC          (20,62,LBL/M) "   pulse       "
  2.015  PIC          (21,62,LBL/M) "   response    "
  2.015  PIC          (6,62,LBL/M) "<- Adjust C2107"
  2.015  PIC          (7,62,LBL/M) "   for optimum "
  2.015  PIC          (8,62,LBL/M) "   channel B   "
  2.015  PIC          (9,62,LBL/M) "   pulse       "
  2.015  PIC          (10,62,LBL/M) "   response    "
  2.015  PIC          (21,3,C/B) "Hardware SCOPE adjustment H2      "
  2.015  PIC          (22,3,C/B) "Analog A2 PCB, SMD components side"
  2.016  5500         *                                                 S
  2.017  HEAD         Adj H3: HARDWARE PULSE RESPONSE *100 ATTENUATOR
  2.018  PORT         EX100,3[13]
  2.019  5500         20Vpp                        1kH            ZQ SC S
  2.020  PIC          9x_a2pcb (7,56,LBL/M) "<- Adjust C2114 for  "
  2.020  PIC          (8,56,LBL/M) "   optimum channel B  "
  2.020  PIC          (9,56,LBL/M) "   pulse response     "
  2.020  PIC          (16,56,LBL/M) "<- Adjust C2214 for  "
  2.020  PIC          (17,56,LBL/M) "   optimum channel A "
  2.020  PIC          (18,56,LBL/M) "   pulse response    "
  2.020  PIC          (21,3,C/B) "Hardware SCOPE adjustment H3      "
  2.020  PIC          (22,3,C/B) "Analog A2 PCB, SMD components side"
  2.021  5500         *                                                 S
  2.022  HEAD         Adj H4: HARDWARE OFFSET AND GAIN
  2.023  PIC          55_9xa
  2.024  PORT         EX100,4[13]
  2.025  5500         254.56mV                     1kH            SI    S  2W
  2.026  PIC          9x_a2pcb (1,2,B/C) "Hardware SCOPE adjustment H4:      "
  2.026  PIC          (2,2,B/C) "Connect TestPoint TP209 to ground. "
  2.026  PIC          (3,2,B/C) "(TP209 is located on the other side"
  2.026  PIC          (4,2,B/C) "of the A2 PCB, in area marked "C1")"
  2.026  PIC          (16,38,LBL/M) "<-- Adjust R2346 and R2347 so that the"
  2.026  PIC          (17,38,LBL/M) "    sinewave on the LCD is exactly 6  "
  2.026  PIC          (18,38,LBL/M) "    divisions: maximum on +3 div.,    "
  2.026  PIC          (19,38,LBL/M) "    minimum on -3 div.                "
  2.026  PIC          (20,38,LBL/M) "    (Tolerance: +/- 1 pixel)          "
  2.027  DISP         Remove the connection between TP209 and ground.
  2.028  5500         *                                                 S
  2.029  DISP         Close the case of the ScopeMeter test tool.
  2.029  DISP         Refer to chapter 6 of the Service Manual
  2.029  DISP         for detailed instructions.
  2.029  DISP
  2.029  DISP         Be sure that the +12V programming voltage is present
  2.029  DISP         and the interface cable is correctly fitted!
  2.030  PORT         EX110,0[13][D200]FLUKPHIL[13]
  2.031  MATH         MEM1=MEM
  2.032  PIC          9x_short
  2.033  HEAD         OFFSET CORRECTION in progress... Please WAIT...
  2.034  PORT         EX100,5[13]
  2.035  MEME
  2.036  JMPT         2.033
  2.037  HEAD         LINEARITY in progress... Please WAIT...
  2.038  PORT         EX101,1[13]
  2.039  MEME
  2.040  JMPT         2.037
  2.041  HEAD         ZEROING THE RANGES in progress... Please WAIT...
  2.042  PORT         EX101,2[13]
  2.043  MEME
  2.044  JMPT         2.041
  2.045  HEAD         ALL RANGES 0 ohm ADJ in progress... Please WAIT...
  2.046  PORT         EX101,10[13]
  2.047  MEME
  2.048  JMPT         2.045
  2.049  HEAD         Make the following connection changes...
  2.050  DISP         Remove all connections.
  2.051  HEAD         OPEN CHANNEL A - Adj in progress... Please WAIT...
  2.052  PORT         EX101,3[13]
  2.053  MEME
  2.054  JMPT         2.051
  2.055  PIC          sc_9xab
  2.056  HEAD         S6: PULSE RESPONSE OF THE *1 ATTENUATOR
  2.057  5500         300mVpp                      1kH            ZQ SC S
  2.058  PORT         EX100,6[13]
  2.059  MEME
  2.060  JMPT         2.056
  2.061  HEAD         S7: PULSE RESPONSE OF THE *10 ATTENUATOR
  2.062  5500         3Vpp                         1kH            ZQ SC S
  2.063  PORT         EX100,7[13]
  2.064  MEME
  2.065  JMPT         2.061
  2.066  HEAD         S8: PULSE RESPONSE OF THE *100 ATTENUATOR
  2.067  5500         20Vpp                        1kH            ZQ SC S
  2.068  PORT         EX100,8[13]
  2.069  MEME
  2.070  JMPT         2.066
  2.071  HEAD         S9: PULSE RESPONSE OF THE *1000 ATTENUATOR
  2.072  5500         50Vpp                        1kH            ZQ SC S
  2.073  PORT         EX100,9[13]
  2.074  MEME
  2.075  JMPT         2.071
  2.076  HEAD         S10: GAIN FOR 5mV
  2.077  5500         20mVpp                       1kH            ZQ SC S
  2.078  PORT         EX100,10[13]
  2.079  MEME
  2.080  JMPT         2.076
  2.081  HEAD         S11: GAIN FOR 10mV
  2.082  5500         50mVpp                       1kH            ZQ SC S
  2.083  PORT         EX100,11[13]
  2.084  MEME
  2.085  JMPT         2.081
  2.086  HEAD         S12: GAIN FOR 20mV
  2.087  5500         100mVpp                      1kH            ZQ SC S
  2.088  PORT         EX100,12[13]
  2.089  MEME
  2.090  JMPT         2.086
  2.091  HEAD         S13: GAIN FOR 50mV
  2.092  5500         200mVpp                      1kH            ZQ SC S
  2.093  PORT         EX100,13[13]
  2.094  MEME
  2.095  JMPT         2.091
  2.096  HEAD         S14: GAIN FOR 100mV
  2.097  5500         500mVpp                      1kH            ZQ SC S
  2.098  PORT         EX100,14[13]
  2.099  MEME
  2.100  JMPT         2.096
  2.101  HEAD         S15: GAIN FOR 200mV
  2.102  5500         1Vpp                         1kH            ZQ SC S
  2.103  PORT         EX100,15[13]
  2.104  MEME
  2.105  JMPT         2.101
  2.106  HEAD         S16: GAIN FOR 2V
  2.107  5500         10Vpp                        1kH            ZQ SC S
  2.108  PORT         EX100,16[13]
  2.109  MEME
  2.110  JMPT         2.106
  2.111  HEAD         S17: GAIN FOR 20V
  2.112  5500         100Vpp                       356H           SM SC S
  2.113  PORT         EX100,17[13]
  2.114  MEME
  2.115  JMPT         2.111
  2.116  HEAD         S18: SHIFT GAIN *1 MODE ADJUSTMENT
  2.117  5500         200mVpp                      1kH            ZQ SC S
  2.118  PORT         EX100,18[13]
  2.119  MEME
  2.120  JMPT         2.116
  2.121  HEAD         S19: SHIFT GAIN /8 MODE adj in progress...
  2.122  5500         20mVpp                       1kH            ZQ SC S
  2.123  PORT         EX100,19[13]
  2.124  MEME
  2.125  JMPT         2.121
  2.126  5500         *                                                 S
  2.127  HEAD         S20: CHANNEL A 50% TRIGGER LEVEL ADJUSTMENT
  2.128  5500         0.707V                       10kH           SI SC S
  2.129  PORT         EX100,20[13]
  2.130  MEME
  2.131  JMPT         2.127
  2.132  HEAD         S21: CHANNEL A 90% TRIGGER LEVEL ADJUSTMENT
  2.133  PORT         EX100,21[13]
  2.134  MEME
  2.135  JMPT         2.132
  2.136  HEAD         S22: CHANNEL B 50% TRIGGER LEVEL ADJUSTMENT
  2.137  PORT         EX100,22[13]
  2.138  MEME
  2.139  JMPT         2.136
  2.140  HEAD         S23: CHANNEL B 90% TRIGGER LEVEL ADJUSTMENT
  2.141  PORT         EX100,23[13]
  2.142  MEME
  2.143  JMPT         2.140
  2.144  5500         *                                                 S
  2.145  PIC          sc_9xae
  2.146  HEAD         S24: EXTERNAL TRIGGERING ADJUSTMENT
  2.147  5500         0.707V                       10kH           SI SC S
  2.148  PORT         EX100,24[13]
  2.149  MEME
  2.150  JMPT         2.146
  2.151  5500         *                                                 S
  2.152  PIC          sc_9xat
  2.153  5500         0.55Vpp                      100kH          ED SC S  L
  2.154  HEAD         S25: RANDOM SAMPLING adj in progress...
  2.155  PORT         EX100,25[13]
  2.156  MEME
  2.157  JMPT         2.154
  2.158  5500         *                                                 S

  2.159  HEAD         M4: CHANNEL A, 300mV RANGE GAIN ADJUSTMENT
  2.160  PIC          55_9xa
  2.161  5500         300mV                                             S  2W
  2.162  PORT         EX101,4[13]
  2.163  MEME
  2.164  JMPT         2.159
  2.165  HEAD         M5: CHANNEL A, 3V RANGE GAIN ADJUSTMENT
  2.166  5500         3V                                                S  2W
  2.167  PORT         EX101,5[13]
  2.168  MEME
  2.169  JMPT         2.165
  2.170  HEAD         M6: CHANNEL A, 30V RANGE GAIN ADJUSTMENT
  2.171  5500         30V                                               S  2W
  2.172  PORT         EX101,6[13]
  2.173  MEME
  2.174  JMPT         2.170
  2.175  HEAD         M7: CHANNEL A, 300V RANGE GAIN ADJUSTMENT
  2.176  5500         300V                                              S  2W
  2.177  PORT         EX101,7[13]
  2.178  MEME
  2.179  JMPT         2.175
  2.180  5500         *                                                 S
  2.181  PIC          55_9xe
  2.182  HEAD         M8: EXTERNAL INPUT, 300mV RANGE, GAIN ADJUSTMENT
  2.183  5500         300mV                                             S  2W
  2.184  PORT         EX101,8[13]
  2.185  MEME
  2.186  JMPT         2.182
  2.187  HEAD         M9: EXTERNAL INPUT, 3V RANGE, GAIN ADJUSTMENT
  2.188  5500         3V                                                S  2W
  2.189  PORT         EX101,9[13]
  2.190  MEME
  2.191  JMPT         2.187
  2.192  5500         *                                                 S
  2.193  HEAD         M11: ADJUSTMENT OF THE 300 ohm RANGE
  2.194  5500         100Z                                              S  2W
  2.195  PORT         [D1000]EX101,11[13]
  2.196  MEME
  2.197  JMPT         2.193
  2.198  HEAD         M12: ADJUSTMENT OF THE 3k ohm RANGE
  2.199  5500         1kZ                                               S  2W
  2.200  PORT         [D1000]EX101,12[13]
  2.201  MEME
  2.202  JMPT         2.198
  2.203  HEAD         M13: ADJUSTMENT OF THE 30k ohm RANGE
  2.204  5500         10kZ                                              S  2W
  2.205  PORT         [D1000]EX101,13[13]
  2.206  MEME
  2.207  JMPT         2.203
  2.208  HEAD         M14: ADJUSTMENT OF THE 300k ohm RANGE
  2.209  5500         100kZ                                             S  2W
  2.210  PORT         [D1000]EX101,14[13]
  2.211  MEME
  2.212  JMPT         2.208
  2.213  HEAD         M15: ADJUSTMENT OF THE 3M ohm RANGE
  2.214  5500         1MZ                                               S  2W
  2.215  PORT         [D1000]EX101,15[13]
  2.216  MEME
  2.217  JMPT         2.213
  2.218  HEAD         M16: ADJUSTMENT OF THE 30M ohm RANGE
  2.219  5500         10MZ                                              S  2W
  2.220  PORT         [D2000]EX101,16[13]
  2.221  MEME
  2.222  JMPT         2.218
  2.223  5500         *                                                 S
  2.224  PIC          55_9xae
  2.225  HEAD         M18: CURRENT RAMP ADJUSTMENT
  2.226  5500         100Z                                              S  2W
  2.227  PORT         EX101,18[13]
  2.228  MEME
  2.229  JMPT         2.225
  2.230  5500         *                                                 S
  2.231  PIC          9x_c1a
  2.232  HEAD         M17: VOLTAGE RAMP ADJUSTMENT
  2.233  PORT         EX101,17[13]
  2.234  MEME
  2.235  JMPT         2.232
  2.236  HEAD         M21: ADJUSTMENT FOR CHANNEL A 1:1 PROBE
  2.237  PORT         EX101,21[13]
  2.238  MEME
  2.239  JMPT         2.236
  2.240  PIC          9x_c1b
  2.241  HEAD         M22: ADJUSTMENT FOR CHANNEL B 1:1 PROBE
  2.242  PORT         EX101,22[13]
  2.243  MEME
  2.244  JMPT         2.241
  2.245  PIC          9x_c10a
  2.246  HEAD         M19: ADJUSTMENT FOR CHANNEL A 10:1 PROBE (RED)
  2.247  PORT         EX101,19[13]
  2.248  MEME
  2.249  JMPT         2.246
  2.250  PIC          9x_c10b
  2.251  HEAD         M20: ADJUSTMENT FOR CHANNEL B 10:1 PROBE (GREY)
  2.252  PORT         EX101,20[13]
  2.253  MEME
  2.254  JMPT         2.251

# Identify ScopeMeter test tool: M[1] = model number
#                                M[2] = software version
  2.255  PORT         ID[13][I$]
  2.256  MATH         M[1] = FLD(MEM2,1,";")
  2.257  MATH         M[2] = FLD(MEM2,2,";")
  2.258  MATH         MEM1 = M[2]-4.999
  2.259  JMPF         2.275

# Store Cal Data, Query Scopemeter Cal Fields ! Version 5 and above only
# disable the SERVICE-mode of the ScopeMeter test tool
  2.260  PORT         EX111,0[13]
# Reset the ScopeMeter
  2.261  PORT         RI[13]
# Enable the SERVICE-mode of the ScopeMeter test tool.
  2.262  PORT         EX110,0[13]FLUKPHIL[13]
# Store the CAL DATA
  2.263  PORT         EX999[13][D2000]
  2.264  MEME
# If MEM1 = 0, then everything was OK.
# If MEM1 = 1, then an error has occured.
  2.265  JMPZ         2.268
  2.266  DISP         An error has occured during execution of CAL STORE
  2.266  DISP         The calibration data is not stored in FlasROM!
# and leave the procedure!
  2.267  JMP          2.281
# Query Scopemeter Cal Fields
# returns Total Cal Fields, # Free
  2.268  PORT         QN[13][I$]
  2.269  MATH         MEM1 = FLD(MEM2, 2, ",")
  2.270  JMPZ         2.273
  2.271  DISP         After this adjustment, there is still space for [MEM1]
  2.271  DISP         adjustments. "Refresh" not necessary.
  2.272  JMP          2.279
  2.273  DISP         After this adjustment, all calibration tables
  2.273  DISP         in FlashROM are filled. "Refresh" recommended!
  2.274  JMP          2.279

# Query Scopemeter Cal Fields ! Version 3 and 4 only
# This must be preformed manualy. Version 3 and 4 instruments do not support
# the automated query.
  2.275  PORT         GL[13]
# disable the SERVICE-mode of the ScopeMeter test tool
  2.276  PORT         EX111,0[13]

  2.277  PORT         PS1,FF3B025F00CF3E10002C000001000300090000020000008A008
  2.277  PORT         000000274002221376611021A0010A680808080808080808080800F
  2.277  PORT         AA000E0A1F240000000100000200020000000000000000000000000
  2.277  PORT         00000000000000000000000000000045830EB2F0000000000000000
  2.277  PORT         0000000000000000[13]

  2.278  PIC          cal9x_2
# Reset the ScopeMeter
# disable the SERVICE-mode of the ScopeMeter test tool
  2.279  PORT         EX111,0[13]
  2.280  DISP         Calibration Adjustment Procedure finished.
  2.280  DISP
  2.280  DISP         First remove the +12V programming voltage, and then
  2.280  DISP         restart the ScopeMeter test tool, using a MASTER RESET

  2.281  END
 

Offline jchw4

  • Regular Contributor
  • *
  • Posts: 61
  • Country: 00
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #134 on: March 05, 2020, 09:03:15 am »
It's mind-blowing.

Do you have Fluke 105 service manual by any chance?
Do you know whether calibration is different for 105?
Any other information that you could share?
 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #135 on: March 05, 2020, 09:14:16 am »
Fluke                                                       MET/CAL Procedure
=============================================================================
INSTRUMENT:            Fluke 91 ScopeMeter: (1 yr) CAL VER RS-232 /5500+SC600
INSTRUMENT:            Fluke 92 ScopeMeter: (1 yr) CAL VER RS-232 /5500+SC600
INSTRUMENT:            Fluke 96 ScopeMeter: (1 yr) CAL VER RS-232 /5500+SC600
INSTRUMENT:            Fluke 99 ScopeMeter: (1 yr) CAL VER RS-232 /5500+SC600
DATE:                  20-Aug-98
AUTHOR:                Fluke Corporation
REVISION:              $Revision: 1.6 $
ADJUSTMENT THRESHOLD:  70%
NUMBER OF TESTS:       48
NUMBER OF LINES:       541
CONFIGURATION:         Fluke 5500A (S6)
=============================================================================
# Source:
#   Service Manual: Fluke Scopemeter 91/92/96/99, chapter 4
#
# Compatibilty:
#   5500/CAL or MET/CAL version 4.23 and later
#
# Required Files:
#   55_9xa  .bmp       5500 NORMAL to ScopeMeter Ch.A
#   55_9xb  .bmp       5500 NORMAL to ScopeMeter Ch.B
#   55_9xe  .bmp       5500 NORMAL to ScopeMeter Ext/mV
#   9x_time .bmp       ScopeMeter timebase instructions
#   sc_9xab .bmp       5500 SCOPE to ScopeMeter Ch.A and Ch.B
#   sc_9xae .bmp       5500 SCOPE to ScopeMeter Ch.A and Ext/mV
#   sc_9xat .bmp       5500 SCOPE to ScopeMeter Ch.A, terminated 50 ohms
#   sc_9xbt .bmp       5500 SCOPE to ScopeMeter Ch.B, terminated 50 ohms
#
# System Specifications:
#   TUR calculations are based on specification interval of the accuracy file
#   The default accuracy files contains 90 day specs.
#
#   Fluke make no warranty, expressed or implied, as to the fitness or
#   suitability of this procedure in the customer application.
#
 STEP    FSC    RANGE NOMINAL        TOLERANCE     MOD1        MOD2  3  4 CON
  1.001  ASK-   R     N              P                            F        W
# Setup RS232-communication
  1.002  PORT         [P1200,N,8,1,X]
# Identify ScopeMeter test tool: M[1] = model number
  1.003  PORT         ID[13]
  1.004  MATH         M[1] = MEM
  1.005  MATH         MEM1 = M[1] - 91
  1.006  JMPZ         1.014
  1.007  MATH         MEM1 = M[1] - 92
  1.008  JMPZ         1.014
  1.009  MATH         MEM1 = M[1] - 96
  1.010  JMPZ         1.014
  1.011  MATH         MEM1 = M[1] - 99
  1.012  JMPZ         1.014
  1.013  JMP          48.001

# enable the SERVICE-mode of the ScopeMeter test tool
  1.014  PORT         EX110,0[13][D1000]FLUKPHIL[13]
  1.015  HEAD         {Cal S1: LCD TEST - DARK BACKGROUND}
  1.016  DISP         After pressing ADVance, a circle with a 45deg line
  1.016  DISP         must be visible on the display for approx. 5 seconds.
  1.016  DISP         The background color is dark.
  1.016  DISP         Any defects in the columns of the display will be
  1.016  DISP         visible in the patterns.
  1.016  DISP
  1.016  DISP         After the 5 second wait, the evaluation message
  1.016  DISP         will appear.
  1.017  PORT         EX110,1[13]
  1.018  MESS         A circle with a 45deg line was visible on the display.
  1.018  MESS         This pattern may not show defects.
  1.018  MESS
  1.019  EVAL   Was pattern without defects?

  2.001  HEAD         {Cal S2: LCD TEST - LIGHT BACKGROUND}
  2.002  DISP         After pressing ADVance, a circle with a 45deg line
  2.002  DISP         must be visible on the display for approx. 5 seconds.
  2.002  DISP         The background color is light.
  2.002  DISP         Any defects in the columns of the display will be
  2.002  DISP         visible in the patterns.
  2.002  DISP
  2.002  DISP         After the 5 second wait, the evaluation message
  2.002  DISP         will appear.
  2.003  PORT         EX110,2[13]
  2.004  MESS         A circle with a 45deg line was visible on the display.
  2.004  MESS         This pattern may not show defects.
  2.004  MESS
  2.005  EVAL   Was pattern without defects?

  3.001  HEAD         {Cal S3: GROUND LEVEL CHECK}
  3.002  PORT         EX120,3[13]
  3.003  MESS         The trace(s) of the displayed channel(s) must be
  3.003  MESS         situated on the vertical middle of the screen
  3.003  MESS         within 0.1 division.
  3.003  MESS
  3.004  EVAL   Are the traces centered within 0.1 div?

  4.001  HEAD         {Cal S21/22: BASE LINE INSTABILITY}
  4.002  DISP         Remove all connections from the ScopeMeter test tool.
  4.002  DISP
  4.002  DISP         Observe in the following test that the trace does
  4.002  DISP         not jump for more than 0.1 divisions.
  4.003  MATH         MEM1=4
# Switch 4 times between setting 21 and 22 to check trace jump
  4.004  JMPZ         4.008          0.1U
  4.005  PORT         EX120,21[13][D1000]
  4.005  PORT         EX120,22[13][D1000]
  4.006  MATH         MEM1 = MEM1 - 1
  4.007  JMP          4.004
# End of "for i=1 to 4"-loop
  4.008  EVAL   Does the trace jump less than 0.1 divisions?
  5.001  PORT         EX110,4[13]

  5.002  HEAD         {Cal M2: VOLTAGE ACCURACY, BANANA JACK INPUTS}
  5.003  PIC          55_9xe
  5.004  PORT         EX111,2[13]
# M2: 300mV DC
  5.005  5500         300.0mV                                           S  2W
  5.006  PORT         [D2000]QM 2 V [13]
  5.007  MATH         MEM = MEM * 1000
  5.008  MEME
  5.009  MEMC         mV             0.5% 0.5U
# M2: 3V DC
  6.001  5500         3.000V                                            S  2W
  6.002  PORT         [D2000]QM 2 V[13]
  6.003  MEME
  6.004  MEMC         V              0.5% 5e-3U

  7.001  HEAD         {Cal M3: OHMS ACCURACY, BANANA JACK INPUTS}
  7.002  PORT         EX111,3[13]
# M3: 0 Ohm
# Next test needs a delay to enable the system to settle to a stable value
  7.003  5500         000.0Z                                            S  2W
  7.004  PORT         [D5000]QM 1 V[13]
  7.005  MEME
  7.006  MEMC         Z              0.5% 0.5U
# M3: 100 Ohm
# Next test needs a delay to enable the system to settle to a stable value
  8.001  5500         100.0Z                                            S  2W
  8.002  PORT         [D5000]QM 1 V[13]
  8.003  MEME
  8.004  MEMC         Z              0.5% 0.5U
# M3: 1 kOhm
# Next test needs a delay to enable the system to settle to a stable value
  9.001  5500         1.000kZ                                           S  2W
  9.002  PORT         [D5000]QM 1 V[13]
  9.003  MATH         MEM = MEM / 1000
  9.004  MEME
  9.005  MEMC         kZ             0.5% 0.005U
# M3: 10 kOhm
# Next test needs a delay to enable the system to settle to a stable value
 10.001  5500         10.00kZ                                           S  2W
 10.002  PORT         [D5000]QM 1 V[13]
 10.003  MATH         MEM = MEM / 1000
 10.004  MEME
 10.005  MEMC         kZ             0.5% 0.05U
# M3: 100 kOhm
# Next test needs a delay to enable the system to settle to a stable value
 11.001  5500         100.0kZ                                           S  2W
 11.002  PORT         [D5000]QM 1 V[13]
 11.003  MATH         MEM = MEM / 1000
 11.004  MEME
 11.005  MEMC         kZ             0.5% 0.5U
# M3: 1 MOhm
# Next test needs a delay to enable the system to settle to a stable value
 12.001  5500         1.000MZ                                           S  2W
 12.002  PORT         [D5000]QM 1 V[13]
 12.003  MATH         MEM = MEM / 1E6
 12.004  MEME
 12.005  MEMC         MZ             0.5% 0.005U
# M3: 10 MOhm
# Next test needs a delay to enable the system to settle to a stable value
 13.001  5500         10.00MZ                                           S  2W
 13.002  PORT         [D5000]QM 1 V[13]
 13.003  MATH         MEM = MEM / 1E6
 13.004  MEME
 13.005  MEMC         MZ             0.5% 0.05U
#
 14.001  HEAD         {Cal M4: DIODE MODE TEST, BANANA JACK INPUTS}
 14.002  PORT         EX111,4[13]
# M2: 3V DC
 14.003  5500         0.900V                                            S  2W
 14.004  PORT         [D2000]QM 1 V [13]
 14.005  MEME
# Readout is in Volts !
 14.006  MEMC         V              0.5% 0.005U

 15.001  HEAD         {Cal M1: VOLTAGE ACCURACY, BNC INPUT}
 15.002  PIC          55_9xa
 15.003  PORT         EX111,1[13]
# M1: 300 mV DC
 15.004  5500         300.0mV                                           S  2W
 15.005  PORT         [D2000]QM 2 V [13]
 15.006  MATH         MEM = MEM * 1000
 15.007  MEME
 15.008  MEMC         mV             0.5% 0.5U
# M1: 300mV AC, 1kHz
 16.001  5500         300.0mV                      1kH            SI    S  2W
 16.002  PORT         [D2000]QM 1 V [13]
 16.003  MATH         MEM = MEM * 1000
 16.004  MEME
 16.005  MEMC         mV             2% 1.5U       1kH
# M1: 1V DC
 17.001  5500         1.000V                                            S  2W
 17.002  PORT         [D2000]QM 2 V [13]
 17.003  MEME
 17.004  MEMC         V              0.5% 0.005U
# M1: 1V AC, 1kHz
 18.001  5500         1.000V                       1kH            SI    S  2W
 18.002  PORT         [D2000]QM 1 V [13]
 18.003  MEME
 18.004  MEMC         V              2% 0.015U     1kH
# M1: 3V DC
 19.001  5500         3.000V                                            S  2W
 19.002  PORT         [D2000]QM 2 V [13]
 19.003  MEME
 19.004  MEMC         V              0.5% 0.005U
# M1: 3V AC, 1kHz
 20.001  5500         3.000V                       1kH            SI    S  2W
 20.002  PORT         [D2000]QM 1 V [13]
 20.003  MEME
 20.004  MEMC         V              2% 0.015U     1kH
# M1: 10V DC
 21.001  5500         10.00V                                            S  2W
 21.002  PORT         [D2000]QM 2 V [13]
 21.003  MEME
 21.004  MEMC         V              0.5% 0.05U
# M1: 10V AC, 1kHz
 22.001  5500         10.00V                       1kH            SI    S  2W
 22.002  PORT         [D2000]QM 1 V [13]
 22.003  MEME
 22.004  MEMC         V              2% 0.15U      1kH
# M1: 30V DC
 23.001  5500         30.00V                                            S  2W
 23.002  PORT         [D2000]QM 2 V [13]
 23.003  MEME
 23.004  MEMC         V              0.5% 0.05U
# M1: 30V AC, 1kHz
 24.001  5500         30.00V                       1kH            SI    S  2W
 24.002  PORT         [D2000]QM 1 V [13]
 24.003  MEME
 24.004  MEMC         V              2% 0.15U      1kH
# M1: 100V DC
 25.001  5500         100.0V                                            S  2W
 25.002  PORT         [D2000]QM 2 V [13]
 25.003  MEME
 25.004  MEMC         V              0.5% 0.5U
# M1: 100V AC, 1kHz
 26.001  5500         100.0V                       1kH            SI    S  2W
 26.002  PORT         [D2000]QM 1 V [13]
 26.003  MEME
 26.004  MEMC         V              2% 1.5U       1kH
# M1: 250V DC
 27.001  5500         250.0V                                            S  2W
 27.002  PORT         [D2000]QM 2 V [13]
 27.003  MEME
 27.004  MEMC         V              0.5% 0.5U
# M1: 200V AC, 1kHz
 28.001  5500         200.0V                       1kH            SI    S  2W
 28.002  PORT         [D2000]QM 1 V [13]
 28.003  MEME
 28.004  MEMC         V              2% 1.5U       1kH

 29.001  HEAD         {Cal S4: VERTICAL DEFLECTION COEFFICIENT CHANNEL A}
#         The deflection is checked in the automatic way with
#         DC only. This is to eliminate the influence of the
#         jump of the trace when measuring with 10kHz.
#         In the manual way it is easier to use 10kHz,
#         because then one sees directly the result on the
#         display.
# S4: 300mV DC and -300mV DC (to eliminate the offset voltage)
 29.002  PORT         EX110,4[13]
 29.003  5500         300mV                                             S  2W
 29.004  PORT         [D2000]QM 6 V[13]
 29.005  MATH         M[1]=MEM
 29.006  5500         -300mV                                            S  2W
 29.007  ACC          600.0mV        TOL
 29.008  PORT         [D2000]QM 6 V[13]
 29.009  MATH         MEM = (M[1] - MEM) * 1000
 29.010  MEME
 29.011  MEMC         mV             2% 4U

 30.001  HEAD         {Cal M5: AUXILIARY SCOPE DISPLAY AND FREQUENCY}
 30.002  PORT         EX111,5[13]
# Verification of frequency read-out
 30.003  5500         1000H                        6Vpp           SQ    S  2W
 30.004  PORT         [D2000]QM 10 V[13]
 30.005  MEME
 30.006  MEMC         H              0.5% 2U
 31.001  5500         1000H                        6Vpp           SQ    S  2W
 31.002  MESS         The signal on the auxiliary scope-display must be
 31.002  MESS         stable value and well triggered.
 31.002  MESS
 31.003  EVAL   Are requirements met ?

# Identify ScopeMeter test tool: MEM = model number
# If model = 91 then MEM1 becomes zero. Use JMPZ to skip ch.B verifications
 32.001  PORT         ID[13]
 32.002  MATH         MEM1 = MEM - 91
 32.003  JMPZ         35.001

 32.004  HEAD         {Cal S5:VERTICAL DEFLECTION COEFFICIENT CHANNEL B}
 32.005  PIC          55_9xb
 32.006  PORT         EX110,5[13]
# S5: 300mV DC and -300mV DC (to eliminate the offset voltage)
 32.007  5500         300mV                                             S  2W
 32.008  PORT         [D2000]QM 6 V[13]
 32.009  MATH         M[1] = MEM
 32.010  5500         -300mV                                            S  2W
 32.011  ACC          600.0mV        TOL
 32.012  PORT         [D2000]QM 6 V[13]
 32.013  MATH         MEM = (M[1] - MEM) * 1000
 32.014  MEME
 32.015  MEMC         mV             2% 4U
 33.001  PORT         EX110,6[13]
# S6: 3V DC and -3V (to eliminate the offset voltage)
 33.002  5500         3.00V                                             S  2W
 33.003  PORT         [D2000]QM 6 V[13]
 33.004  MATH         M[1] = MEM
 33.005  5500         -3.00V                                            S  2W
 33.006  ACC          6.000V         TOL
 33.007  PORT         [D2000]QM 6 V[13]
 33.008  MATH         MEM = M[1] - MEM
 33.009  MEME
 33.010  MEMC         V              2% 0.04U
 34.001  PORT         EX110,7[13]
# S7: 30V DC and -30V (to eliminate the offset voltage)
 34.002  5500         30V                                               S  2W
 34.003  PORT         [D2000]QM 6 V[13]
 34.004  MATH         M[1] = MEM
 34.005  5500         -30V                                              S  2W
 34.006  ACC          60.00V         TOL
 34.007  PORT         [D2000]QM 6 v[13]
 34.008  MATH         MEM = M[1] - MEM
 34.009  MEME
 34.010  MEMC         V              2% 0.4U

 35.001  HEAD         {Cal S9: RISE TIME CHANNEL A}
# PASS: risetime <= 7.0ns, FAIL: risetime > 7.0ns
 35.002  PIC          sc_9xat
 35.003  PORT         EX110,9[13]
 35.004  5500         100kH                        0.5Vpp         ED S6 S  L
 35.005  ACC          0.0nT          +1.0U
 35.006  PORT         [D8000]QM 11 V[13]
 35.007  MATH         MEM = MEM * 1E9
 35.008  MEME
 35.009  MEMC         nT             +7.0U

 36.001  HEAD         {Cal S10/S11: FREQUENCY RESPONSE CHANNEL A}
# PASS: rms(50MHz) >= 0.7 * rms(100kHz), FAIL: rms(50MHz) < 0.7 * rms(100kHz)
 36.002  ASK-                              U
 36.003  PORT         EX110,10[13]
 36.004  5500         0.12Vpp                      50kH           LS S6 S  L
 36.005  PORT         [D3000]QM 5 V[13]
 36.006  MATH         M[1] = MEM * 0.7
 36.007  PORT         EX110,11[13]
 36.008  5500         0.12Vpp                      50MH           LS S6 S  L
 36.009  MATH         MEM = M[1]
 36.010  ACC          Vpp            TOL
 36.011  PORT         [D3000]QM 5 V[13]
 36.012  MEME
 36.013  MEMC         Vpp            +100%         50MH
 37.001  ASK+                              U

 37.002  HEAD         {Cal S16/S17: TRIGGER SENSITIVITY CHANNEL A}
 37.003  ASK-                              U
 37.004  PORT         EX110,16[13]
 37.005  MATH         M[1] = 0.250
 37.006  MATH         MEM = M[1]
 37.007  5500         Vpp                          10MH           LS S6 S  L
 37.008  PORT         [D3000]QM 7 V[13]
 37.009  MATH         MEM1 = MEM - 0.300
 37.010  JMPT         37.013
 37.011  MATH         M[1] = M[1] - MEM1
 37.012  JMP          37.006
 37.013  MESS         The frequency of the signal is 10MHz
 37.013  MESS         and the period is 100ns = 5 div.
 37.013  MESS
 37.013  MESS         The signal on the display should be stable value,
 37.013  MESS         and triggered on Negative slope.
 37.013  MESS
 37.014  RSLT         =Signal frequency: 10MHz, negative slope
 37.015  EVAL   Is the signal well triggered on Negative slope?
# same procedure for 60MHz sine-wave signal
 38.001  PORT         EX110,17[13]
 38.002  MATH         M[1] = 0.075
 38.003  MATH         MEM=M[1]
 38.004  5500         Vpp                          60MH           LS S6 S  L
 38.005  PORT         [D3000]QM 7 V[13]
 38.006  MATH         MEM1 = MEM - 0.100
 38.007  JMPT         38.010
 38.008  MATH         M[1] = M[1] - MEM1
 38.009  JMP          38.003
 38.010  MESS         The frequency of the signal is 60MHz
 38.010  MESS         and the period is 10ns = 1 div.
 38.010  MESS
 38.010  MESS         The signal on the display should be stable value.
 38.010  MESS
 38.011  RSLT         =Signal frequency: 60MHz
 38.012  EVAL   Is the signal well triggered?
# same procedure for 100MHz sine-wave signal
 39.001  PORT         EX110,17[13]
 39.002  MESS         Adjust the output voltage so that the
 39.002  MESS         amplitude is exactly 4 divisions on the LCD.
 39.002  MESS
 39.003  5500         0.7Vpp                       100MH          LS S6 N  L
 39.004  MESS         The frequency of the signal is 100MHz
 39.004  MESS         and the period is 6.6ns = 0.66 div.
 39.004  MESS
 39.004  MESS         The signal on the display should be stable value.
 39.004  MESS
 39.005  RSLT         =Signal frequency: 100MHz
 39.006  EVAL   Is the signal well triggered?
 40.001  MESS
 40.002  ASK+                              U

 40.003  HEAD         {Cal S18: TIMEBASE}
 40.004  PORT         EX110,18[13]
 40.005  5500         1uT                                         M1 S6 S  L
# PIC picture of S18 measurement (time marker pulses)
 40.006  PIC          9x_time
 40.007  MESS         Adjust the repetition time so that the distances
 40.007  MESS         are the same.
 40.007  MESS
 40.008  5500         1.000uT        0.08U                        M1 S6    L
 41.001  MESS

# Identify ScopeMeter test tool: MEM = model number
# If model = 91 then MEM1 becomes zero. Use JMPZ to skip ch.B verifications
 41.002  PORT         ID[13]
 41.003  MATH         MEM1 = MEM - 91
 41.004  JMPZ         46.003

 41.005  HEAD         {Cal S8: RISE TIME CHANNEL B}
# PASS: risetime <= 7.0ns, FAIL: risetime > 7.0ns
 41.006  PIC          sc_9xbt
 41.007  PORT         EX110,8[13]
 41.008  5500         100kH                        0.5Vpp         ED S6 S  L
 41.009  ACC          0.0nT          +1.0U
 41.010  PORT         [D8000]QM 11 V[13]
 41.011  MATH         MEM = MEM * 1E9
 41.012  MEME
 41.013  MEMC         nT             +7.0U

 42.001  HEAD         {Cal S12/S13: FREQUENCY RESPONSE CHANNEL B}
 42.002  ASK-                              U
 42.003  PORT         EX110,12[13]
 42.004  5500         0.12Vpp                      50kH           LS S6 S  L
 42.005  PORT         [D3000]QM 5 V[13]
 42.006  MATH         M[1] = MEM * 0.7
 42.007  PORT         EX110,13[13]
 42.008  5500         0.12Vpp                      50MH           LS S6 S  L
 42.009  MATH         MEM = M[1]
 42.010  ACC          Vpp            TOL
 42.011  PORT         [D3000]QM 5 V[13]
 42.012  MEME
# PASS: rms(50MHz) >= 0.7 * rms(100kHz), FAIL: rms(50MHz) < 0.7 * rms(100kHz)
 42.013  MEMC         Vpp            +100%         50MH
 43.001  ASK+                              U

 43.002  HEAD         {Cal S14/S15: TRIGGER SENSITIVITY CHANNEL B}
 43.003  ASK-                              U
 43.004  PORT         EX110,15[13]
 43.005  MATH         M[1] = 0.250
 43.006  MATH         MEM = M[1]
 43.007  5500         Vpp                          10MH           LS S6 S  L
 43.008  PORT         [D2000]QM 7 V[13]
 43.009  MATH         MEM1 = MEM - 0.300
 43.010  JMPT         43.013
 43.011  MATH         M[1] = M[1] - MEM1
 43.012  JMP          43.006
 43.013  MESS         The frequency of the signal is 10MHz
 43.013  MESS         and the period is 100ns = 5 div.
 43.013  MESS
 43.013  MESS         The signal on the display should be stable value,
 43.013  MESS         and triggered on Negative slope.
 43.013  MESS
 43.014  RSLT         =Signal frequency: 10MHz, negative slope
 43.015  EVAL   Is the signal well triggered on Negative slope?
# same procedure for 60MHz sine-wave signal
 44.001  PORT         EX110,14[13]
 44.002  MATH         M[1] = 0.075
 44.003  MATH         MEM = M[1]
 44.004  5500         Vpp                          60MH           LS S6 S  L
 44.005  PORT         [D2000]QM 7 V[13]
 44.006  MATH         MEM1 = MEM - 0.100
 44.007  JMPT         44.010
 44.008  MATH         M[1] = M[1] - MEM1
 44.009  JMP          44.003
 44.010  MESS         The frequency of the signal is 60MHz
 44.010  MESS         and the period is 10ns = 1 div.
 44.010  MESS
 44.010  MESS         The signal on the display should be stable value.
 44.010  MESS
 44.011  RSLT         =Signal frequency: 60MHz
 44.012  EVAL   Is the signal well triggered?
# same procedure for 100MHz sine-wave signal
 45.001  PORT         EX110,14[13]
 45.002  MESS         Adjust the output voltage so that the
 45.002  MESS         amplitude is exactly 4 divisions on the LCD.
 45.002  MESS
 45.003  5500         0.7Vpp                       100MH          LS S6 N  L
 45.004  MESS         The frequency of the signal is 100MHz
 45.004  MESS         and the period is 6.6ns = 0.66 div.
 45.004  MESS
 45.004  MESS         The signal on the display should be stable value.
 45.004  MESS
 45.005  RSLT         =Signal frequency: 100MHz
 45.006  EVAL   Is the signal well triggered?
 46.001  MESS
 46.002  ASK+                              U

 46.003  HEAD         {Cal S19: TRIGGER SENSITIVITY EXTERNAL CHANNEL}
 46.004  ASK-                              U
 46.005  PIC          sc_9xae
 46.006  PORT         EX110,19[13]
 46.007  M550                                      1.4Voff
 46.008  5500         1.8Vpp                       1kH            SI S6 S
 46.009  MESS         The frequency of the signal is 1 kHz
 46.009  MESS         and the period is 1 us = 2 div.
 46.009  MESS
 46.009  MESS         The signal on the display should be stable value.
 46.009  MESS
 46.010  EVAL   Is the signal well triggered?
 47.001  M550         *
 47.002  ASK+                              U

# Identify ScopeMeter test tool: MEM = model number
# If model = 91 then MEM1 becomes zero. Use JMPZ to skip ch.B verifications
 47.003  PORT         ID[13]
 47.004  MATH         MEM1 = MEM - 91
 47.005  JMPZ         48.001

 47.006  HEAD         {Cal S20: HORIZONTAL DEFLECTION: Xl DEFLECTION}
 47.007  ASK-                              U
 47.008  PIC          sc_9xab
 47.009  5500         2kH                          800mVpp        SI S6 S
 47.010  PORT         EX110,20[13]
 47.011  MESS         A trace under a 45deg angle must be displayed. The gap
 47.011  MESS         between the lines must be smaller than 0.4 divisions.
 47.011  MESS
 47.012  EVAL   Is the 45deg line with a gap smaller than 0.4 div displayed?
 48.001  END
 
The following users thanked this post: marrob

Offline Aldo007

  • Newbie
  • Posts: 1
  • Country: fr
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #136 on: April 21, 2020, 04:28:23 am »
Hello,
 I just acquired a scopemeter fluke 97, the firmware is at index 3.01, I would like to know the procedure to be able to perform the firmware update with the latest version, or at least version 4.
So I'm looking for the procedure to perform this update as well as the firmware file.
Another question is, does it have an impact on the device's calibration data? 
Thank you in advance for your return.
Aldo
 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #137 on: June 15, 2020, 09:24:31 am »
Hi,

I have made a adaptor to use BNC input with multimeter leads. Is a 10:1 attenunator with HV voltage capacitors to compensate HF. It can measure up to 3kv

Regards

« Last Edit: June 15, 2020, 10:54:45 am by harrimansat »
 

Offline Hairystuff

  • Contributor
  • Posts: 14
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #138 on: September 08, 2020, 12:02:23 pm »
Hi @jellytot

Thanks for the flash dump, I did try and mux the top part of the dump on to my one but unfortunately it didn't work for me, I guess I'll have to wait till a flash dump of the PM93 shows up.
« Last Edit: September 08, 2020, 12:04:18 pm by Hairystuff »
 

Offline marrob

  • Contributor
  • Posts: 22
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #139 on: October 03, 2020, 08:59:20 am »
I just found this thread while looking for info on the PM97. It's been a while so I'm not sure if anyone is still interested but I have a couple of things I can add...

For Hairystuff, I had a quick look at flash file (thanks jellytot - very useful) and it appears that the code is the same for all 3 versions. Early on in the code location 0x0106 is checked with bits 0,1 or 2 being set for 93,95 or 97. The value in the file is 0x14 so I'm guessing if you change it to 0x11 it will run on a PM93 (providing you have the early hardware with the keyboard on the main pcb)

The MAT/CAL routines posted by harrimansat were also very interesting, you can display how many calibration slots are available without having to apply the 12V programming voltage by sending the serial string:

  2.277  PORT         PS1,FF3B025F00CF3E10002C000001000300090000020000008A008
  2.277  PORT         000000274002221376611021A0010A680808080808080808080800F
  2.277  PORT         AA000E0A1F240000000100000200020000000000000000000000000
  2.277  PORT         00000000000000000000000000000045830EB2F0000000000000000
  2.277  PORT         0000000000000000[13]

Also, I had to make an adapter so I could use the currently available IR189USB serial lead with the PM97. I've attached the STL file in case anyone else wants to 3D print one

 
The following users thanked this post: harrimansat, AVGresponding

Offline KRISTOFFER

  • Contributor
  • Posts: 7
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #140 on: October 30, 2020, 11:17:40 pm »
I have a working 97 with one NF28010, and, a working 97 with one N28F512 and one NF28F256A. I also have a non working 97 and a non working 95 with similar set ups. Looking at the data sheet for these Flash devices they can be read in circuit. Does that mean I can read the contents from the working devices and then program it to the non working devices without having to de-solder them from the boards. The non working devices get as far as checking the Flash and getting no further to powering up. Suspect the Flash chips have been erased.
 

Offline marrob

  • Contributor
  • Posts: 22
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #141 on: October 31, 2020, 09:52:53 am »
The simple answer is yes, you can read and write the flash chips via the serial port. I've been playing around with this just out of curiosity and I've made quite a bit of progress.

The first thing to point out is that there are 2 versions of the 90 series scopemeters, an early version with pre 5.0 firmware and the keyboard integrated with the digital PCB, and a later model with 5.x firmware and a horrible membrane keyboard. The kernel in the 83C196 ROM is completely different between the 2 versions. I believe I've worked out how to program the early version but the later version uses  "Universal Host Mask software V1.0", which is common to other Fluke instruments. If anyone has a command list for this I would love to see it.

In order to read the flash chips in the early version you first need to enter the kernel. For a working device you can do this in one of 2 ways:
1. press both AC/DC/GROUND keys to enter service mode followed by softkey 3 (labelled EM)
2. send EM\rFLUKPHIL\r via the serial port (thanks to harrimansat's MAT/CAL routines for this nugget)

You can verify that you are in the kernel by sending the ID command as the scopemeter responds with "Scopemeter 90 family MSK V2.01 ; 02-15-91" instead of the usual ID.
From the kernel you have several new commands:
EO - exit kernel
QF - query flash (sends binary flash contents via the serial port)
PF - program flash
CF - clear flash?? (I haven't been brave enough to try this yet :) )

For non-working scopemeters the service manual details a way to get into the kernel but I haven't tried it out.

I've got as far as being able to dump the flash contents and I've managed to program an unused flash location so I'm sure it's possible to write a reflash program. Now I'd like to work out how to do the same with the post 5.0 versions.
 
The following users thanked this post: jellytot, harrimansat, AVGresponding

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #142 on: October 31, 2020, 11:14:36 am »
The simple answer is yes, you can read and write the flash chips via the serial port. I've been playing around with this just out of curiosity and I've made quite a bit of progress.

The first thing to point out is that there are 2 versions of the 90 series scopemeters, an early version with pre 5.0 firmware and the keyboard integrated with the digital PCB, and a later model with 5.x firmware and a horrible membrane keyboard. The kernel in the 83C196 ROM is completely different between the 2 versions. I believe I've worked out how to program the early version but the later version uses  "Universal Host Mask software V1.0", which is common to other Fluke instruments. If anyone has a command list for this I would love to see it.

In order to read the flash chips in the early version you first need to enter the kernel. For a working device you can do this in one of 2 ways:
1. press both AC/DC/GROUND keys to enter service mode followed by softkey 3 (labelled EM)
2. send EM\rFLUKPHIL\r via the serial port (thanks to harrimansat's MAT/CAL routines for this nugget)

You can verify that you are in the kernel by sending the ID command as the scopemeter responds with "Scopemeter 90 family MSK V2.01 ; 02-15-91" instead of the usual ID.
From the kernel you have several new commands:
EO - exit kernel
QF - query flash (sends binary flash contents via the serial port)
PF - program flash
CF - clear flash?? (I haven't been brave enough to try this yet :) )

For non-working scopemeters the service manual details a way to get into the kernel but I haven't tried it out.

I've got as far as being able to dump the flash contents and I've managed to program an unused flash location so I'm sure it's possible to write a reflash program. Now I'd like to work out how to do the same with the post 5.0 versions.

wow!

For non-working scopemeters the service manual details a way to get into the kernel but I haven't tried it out.

Which service manual?
 

Offline marrob

  • Contributor
  • Posts: 22
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #143 on: October 31, 2020, 12:56:08 pm »
It's mentioned under section 7.1.6.2 Kernel Test in the Fluke_93-95-97_Service_Manual you can find on line....

ESTABLISHING COMMUNICATION
10. After the seventeenth time of grounding TP217, the ScopeMeter sends an <XON> via the
RS-232 interface. Now communication is established, it is possible to reprogram the
FlashROMs. For special software contact your nearest FlukeIPhilips Service Center.
11. Ground testpoint TP216 one more time to abort the Kernel Test.
 
The following users thanked this post: harrimansat

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #144 on: October 31, 2020, 01:36:20 pm »
It's mentioned under section 7.1.6.2 Kernel Test in the Fluke_93-95-97_Service_Manual you can find on line....

ESTABLISHING COMMUNICATION
10. After the seventeenth time of grounding TP217, the ScopeMeter sends an <XON> via the
RS-232 interface. Now communication is established, it is possible to reprogram the
FlashROMs. For special software contact your nearest FlukeIPhilips Service Center.
11. Ground testpoint TP216 one more time to abort the Kernel Test.

Thanks!

How do you managed to read/writte flash?

I have tryed with my 97 and 105, enters in kernel but how works QF?
 

Offline marrob

  • Contributor
  • Posts: 22
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #145 on: October 31, 2020, 02:20:21 pm »
Thanks!

How do you managed to read/writte flash?

I have tryed with my 97 and 105, enters in kernel but how works QF?

QF takes 4 parameters, I'm not sure what the first one is for but only 0 seems to work.
The 2nd selects one of 3 32K blocks and must be either 0,2 or 3
The 3rd is the start address in the block in decimal
The 4th is the size of the data to download, also in decimal
The scopemeter responds with 0 in ASCII, carriage return, the data in binary, and finally a checksum, also in binary
so QF0,0,0,4\r will return the first 4 bytes (in binary) from the first block, which is CPU memory location 0. These are all FF so the checksum is FC
 
The following users thanked this post: harrimansat

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #146 on: November 01, 2020, 08:42:01 pm »
Thanks!

How do you managed to read/writte flash?

I have tryed with my 97 and 105, enters in kernel but how works QF?

QF takes 4 parameters, I'm not sure what the first one is for but only 0 seems to work.
The 2nd selects one of 3 32K blocks and must be either 0,2 or 3
The 3rd is the start address in the block in decimal
The 4th is the size of the data to download, also in decimal
The scopemeter responds with 0 in ASCII, carriage return, the data in binary, and finally a checksum, also in binary
so QF0,0,0,4\r will return the first 4 bytes (in binary) from the first block, which is CPU memory location 0. These are all FF so the checksum is FC

Thanks, it works!
I have to try if is possible to read the entery flash
Please let us know if you find out more things

 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #147 on: November 02, 2020, 09:01:22 am »
This is my scope dump:

model 9x ;   V4.05 ; 93-05-24. (FLUKE 97)

I use realterm for comunication
« Last Edit: November 04, 2020, 12:44:03 pm by harrimansat »
 

Offline marrob

  • Contributor
  • Posts: 22
  • Country: gb
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #148 on: November 02, 2020, 10:59:33 am »
Well done harrimansat. Your files are very different to mine but mine is a slightly older version (4.02)
Also, our 3.BIN file is 1 byte too long for some reason.

I can now confirm that the command CF0 will completely erase the 28F010 flash if the 12V programming voltage is applied so be careful!

Are you Spanish? (sin titulo.png)
 

Offline harrimansat

  • Regular Contributor
  • *
  • Posts: 149
Re: Old Philips Fluke 97 / 96B (maybe others?)
« Reply #149 on: November 02, 2020, 12:43:27 pm »
Well done harrimansat. Your files are very different to mine but mine is a slightly older version (4.02)
Also, our 3.BIN file is 1 byte too long for some reason.

I can now confirm that the command CF0 will completely erase the 28F010 flash if the 12V programming voltage is applied so be careful!

Are you Spanish? (sin titulo.png)

Yes, I´m Spanish. 8)
I am very curious to know how you got the commands to read the flash, theoretically they are recorded in the kernel, right?

I have searched a lot on the internet and I have not found anything!

 


Share me

Digg  Facebook  SlashDot  Delicious  Technorati  Twitter  Google  Yahoo
Smf