Author Topic: TL494 Sim Test, Not Working.  (Read 2429 times)

0 Members and 1 Guest are viewing this topic.

Offline 2DrTahoeTopic starter

  • Newbie
  • Posts: 4
  • Country: us
TL494 Sim Test, Not Working.
« on: December 29, 2016, 02:41:38 am »
Hello,
I just wanted to simulate a circuit in Mousers MultiSIM BLUE that I found and it doesn't work even though it is a good working circuit according to others. I have attached the working version as well as on that I slightly modified by removing the 15a current limiter and replace the motor with an LED.

The oscilloscope does show working voltages but no PWM signal. Can anyone point out the obvious that is oblivious to me?

Thanks
 

Offline T3sl4co1l

  • Super Contributor
  • ***
  • Posts: 21729
  • Country: us
  • Expert, Analog Electronics, PCB Layout, EMC
    • Seven Transistor Labs
Re: TL494 Sim Test, Not Working.
« Reply #1 on: December 29, 2016, 03:31:40 am »
Green looks like a footprint, not a simulation component...

Try adding this model.  Forget where I got it from.  Haven't tested it, but it looks compatible at least.

May be slow (lots of analog parts inside), and may be unstable (uses analog switches -- can be tricky for convergence).  Try adjusting TRTOL, integration method (to GEAR), iterations (ITL4), increasing ABSTOL, CHGTOL, VNTOL, GMIN and RSHUNT.

Code: [Select]

* PARAMETERIZED TEMPLATE:
* DEVICE TYPE= tl493
* MODEL TYPE=591
* COMMENTS:
* T FLIP FLOP section is implemented with reference to SG1525A of swit_reg library.
* The output section is replaced with new one.
* Added on  12 Nov 2002 by sjaiswal
* Pin Names :
*TERM(+IN1)=1 - 1
*TERM(-IN1)=2 - 2
*TERM(COMP)=3 - 3
*TERM(DTC)=4 - 4
*TERM(CT)=5 - 5
*TERM(RT)=6 -6
*TERM(GND)=7 -7
*TERM(C-A)=8 - 8
*TERM(E-A)=9 - 9
*TERM(E-B)=10 -10
*TERM(C-B)=11 - 11
*TERM(+Vin)=12 - 12
*TERM(OC)=13 - 13
*TERM(Vref)=14 - 14
*TERM(-IN2)=15 -15
*TERM(+IN2)=16 -16
*
.SUBCKT MODEL591_TL493   13 8 9 11 10 16 15 3 7 2 1 5 6 4 14 12
+ params:
+ INPUT_VTH=3.5
+ PERIOD=0.1E-3
+ VREF=5
+ V_DTC=0.12
+ V_PWM=0.7
*
.PARAM    RT = {0.98*(PERIOD)}
.PARAM    REF = {0.001*(VREF)}
.PARAM    FT = {0.01*(PERIOD)}
.PARAM    PER ={0.005*(PERIOD)}
.PARAM    PEAK ={(INPUT_VTH)-(V_PWM)}
*
GI6         7 6 1 3 -5
RR18         7 6  10K 
VV71         52 7 
+PULSE 0 {PEAK} 0 {RT} {FT} {PER} {PERIOD}
II17         13 7 DC 212.5E-9 
DD30         33 41 M3MMID
VV51         1 5 {V_PWM}
GI14         7 33 32 2 1
VV33         38 7 1.2
GV83         7 20 6 7 200E-9
DD33         38 34 M3MMID
CC9         4 7  100E-15 
RR24         7 28  10 
RR25         13 32  1MEG 
II16         32 7 DC 187.5E-9 
SS8    18 10 20 7   MSWITCH8
.MODEL  MSWITCH8 VSWITCH Roff=1e3 Ron=1e-3 Voff=495mV Von=500mV
DD88         52 12 M4M1524Ad
II36         7 55 DC {REF} 
Ev103         55 58 POLY(2) 57 7 57 7 -1.2 1 0 0 0
RR133         7 13  3.89153891538K 
CC10         6 7  100E-15 
II56         28 7 DC 4.7E-3 
II10         15 7 DC 212.5E-9 
RR21         7 35  10 
II18         30 7 DC 187.5E-9 
CC12         33 7  109.0658598726E-9 
VV34         40 7 1.2
DD1         40 33 M3MMID
RR15         7 14  10E6 
VV25         8 7 5
DD29         6 8 M3MMID
RR140         12 7  2.5K 
DD32         34 39 M3MMID
VV72         32 1 20E-6
GI10         7 34 30 15 1
GI4         7 4 5 56 -5
RR139         7 4  1E9 
RR15         7 5  100MEG 
VV32         41 7 2.9
VV74         18 7 5
II15         3 7 DC 700E-6 
R5         0 5  650 
RR5         15 30  1E6 
EV102         27 7 55 7 1
GV82         7 25 4 7 200E-9
VV24         9 7 5
GI2         57 7 27 14 9
RR18         27 14  71.77777E-3 
VV49         56 4 {V_DTC}
RR49         0 6  1k 
II34         12 52 DC 35mA 
DD87         52 57 M4M1524Ad
DD28         7 6 M3MMID
RR54         6 0  1k 
DD91         29 35 M3MMID
R12         0 45  650 
RR20         7 34  165.7766016829310988935643272 
Gi54         7 45 POLY(2) 2 7 12 0 0 0 0 0 12.5u
RR88         7 25  1E6 
GI9         7 35 34 7 0.1
Gi55         7 5 POLY(2) 2 0 14 0 0 0 0 0 12.5u
RR17         7 1  1k 
SS7    18 10 25 7  MSWITCH7
.MODEL  MSWITCH7 VSWITCH Roff=1e3 Ron=1e-3 Voff=495mV Von=500mV
RR89         7 20  1E6 
DD34         7 3 M3MMID
II57         35 29 DC 4.7E-3 
GI35         7 55 57 7 60.60606E-9
GI13         7 28 33 7 0.1
CC29         55 7  100P 
RR16         7 4  10K 
DD26         7 4 M3MMID
DD86         58 7 M4M1524Ad
DD27         4 9 M3MMID
II5         56 7 DC 2E-6 
RR8         7 33  56.3K 
DD35         29 3 M3MMID
DD90         7 28 M3MMID
VV29         30 16 80E-6
VV1         39 7 2.9
RR52         5 52  10 
R16         0 12  1k 
RR124         7 55  1k 
II29         10 7 DC 10E-3 
CC7         34 7  109.0658598726E-9 
*
*******************
*FLIP FLOP SECTION
*******************
X_U3       107 14 12 108 0 TFF_TL493
E4         107 109 10 0 -1
V5         109 0 5Vdc
R9         0 14  100K
R10         0 12  100k
V3         108 0 5Vdc
**************************************
*OUTPUT STAGE
**************************************
ss104  105 102  45 0  MSWITCH104
.MODEL  MSWITCH104 VSWITCH Roff=1e3 Ron=1e-3 Voff=495m Von=500mV
I1         101 0 DC 10mAdc 
V6         106 0 5
I2         102 0 DC 10mAdc 
V7         105 0 5
ss101 106 101  10 0  MSWITCH101
.MODEL MSWITCH101 VSWITCH Roff=1e3 Ron=1e-3 Voff=495m Von=500mV
ss102 106 101 5 0  MSWITCH102
.MODEL MSWITCH102 VSWITCH Roff=1e3 Ron=1e-3 Voff=495m Von=500mV
ss103 105 102  10 0  MSWITCH103
.MODEL MSWITCH103 VSWITCH Roff=1e3 Ron=1e-3 Voff=495m Von=500mV
SS17    8 9 101 7  MSWITCH17
.MODEL  MSWITCH17 VSWITCH Roff=1e6 Ron=1.0 Voff=1.0V Von=0.0V
SS16    11 10 102 7  MSWITCH16
.MODEL  MSWITCH16 VSWITCH Roff=1e6 Ron=1.0 Voff=1.0V Von=0.0V
CC30         8 9  200p
CC1         11 10  200p
************************************
.MODEL M4M1524Ad D
+ IS=10f
+ XTI=0
+ EG=0
+ RS=100m
.MODEL M3MMID D
+ IS=10f
+ XTI=0
+ EG=0
.ENDS MODEL591_TL493

.SUBCKT TFF_TL493 1 10 20 50 40
*********** |  |  |  |  | 
*********** |  |  |  | GND 
*********** |  |  | VCC 
*********** |  |  QNOT 
*********** |  Q 
*********** INPUT 
R3 2 50 1E3 
R4 50 3 1E3 
R5 2 6 10E3 
R6 3 5 10E3 
Q1 2 5 40 Q222200 
Q2 3 6 40 Q222200 
D1 5 7 D1 
D2 6 8 D1 
C1 1 7 100E-12 
C2 1 8 100E-12 
R1 2 7 10000 
R2 3 8 10000 
X1 2 2 10 50 40 NAND_TL493 
X2 3 3 20 50 40 NAND_TL493 
*
.MODEL Q222200 NPN      (
+         IS = 3.97589E-14
+         BF = 195.3412
+         NF = 1.0040078
+        VAF = 53.081
+        IKF = 0.976
+        ISE = 1.60241E-14
+         NE = 1.4791931
+         BR = 1.1107942
+         NR = 0.9928261
+        VAR = 11.3571702
+        IKR = 2.4993953
+        ISC = 1.88505E-12
+         NC = 1.1838278
+         RB = 56.5826472
+        IRB = 1.50459E-4
+        RBM = 5.2592283
+         RE = 0.0402974
+         RC = 0.4208
+        CJE = 2.56E-11
+        VJE = 0.682256
+        MJE = 0.3358856
+         TF = 3.3E-10
+        XTF = 6
+        VTF = 0.574
+        ITF = 0.32
+        PTF = 25.832
+        CJC = 1.40625E-11
+        VJC = 0.5417393
+        MJC = 0.4547893
+       XCJC = 1
+         TR = 3.2E-7
+        CJS = 0
+        VJS = .75
+        MJS = 0
+        XTB = 1.6486
+         EG = 1.11
+        XTI = 5.8315
+         KF = 0
+         AF = 1
+         FC = 0.83
+)
.ENDS TFF_TL493
*
.SUBCKT NAND_TL493 1  2  3  4  40 
 
*
.MODEL D1 D(
+         IS = 1E-14
+         RS = 40
+          N = 1
+         TT = 0.1NS
+        CJO = 0.9PF
+         VJ = 1
+          M = .5
+         EG = 1.11
+        XTI = 3
+         KF = 0
+         AF = 1
+         FC = .5
+         BV = 9.9999E+13
+        IBV = .001)
*
.MODEL NP NPN(
+         IS = 1E-16
+         BF = 50
+         NF = 1
+        VAF = 50
+        IKF = 9.9999E+13
+        ISE = 0
+         NE = 1.5
+         BR = 1
+         NR = 1
+        VAR = 9.9999E+13
+        IKR = 9.9999E+13
+        ISC = 0
+         NC = 2
+         RB = 70
+        IRB = 9.9999E+13
+        RBM = 0
+         RE = 0
+         RC = 40
+        CJE = 0.9PF
+        VJE = .75
+        MJE = .33
+         TF = 0.1NS
+        XTF = 0
+        VTF = 9.9999E+13
+        ITF = 0
+        PTF = 0
+        CJC = 1.5PF
+        VJC = 0.85
+        MJC = .33
+       XCJC = 1
+         TR = 10NS
+        CJS = 2PF
+        VJS = .75
+        MJS = 0
+        XTB = 0
+         EG = 1.11
+        XTI = 3
+         KF = 0
+         AF = 1
+         FC = .5)

D1 8 6 D1 
D2 8 7 D1 
Q1 9 11 40 NP
R1 4 8 1E3 
R2 4 9 1E3 
R3 10 11 1E3 
R4 1 40 1E6 
R5 2 40 1E6 
E1 6 40 1 40 1 
E2 7 40 2 40 1 
E3 10 40 8 40 0.75 
E4 20 40 9 40 1 
R20 20 12 1E3 
C12 12 40 1E-12 
E5 30 40 12 40 1 
ROUT 30 3 40

.ENDS NAND_TL493


*$

Tim
Seven Transistor Labs, LLC
Electronic design, from concept to prototype.
Bringing a project to life?  Send me a message!
 

Offline 2DrTahoeTopic starter

  • Newbie
  • Posts: 4
  • Country: us
Re: TL494 Sim Test, Not Working.
« Reply #2 on: December 30, 2016, 12:37:14 am »
Thanks for the reply but i'm a beginner and that is way over my head. I can say though that this chip is not the type that can be programmed.
 

Offline T3sl4co1l

  • Super Contributor
  • ***
  • Posts: 21729
  • Country: us
  • Expert, Analog Electronics, PCB Layout, EMC
    • Seven Transistor Labs
Re: TL494 Sim Test, Not Working.
« Reply #3 on: December 30, 2016, 12:47:46 am »
Ah, then, you'll need to search for how to add a SPICE model to a component. :)

Tim
Seven Transistor Labs, LLC
Electronic design, from concept to prototype.
Bringing a project to life?  Send me a message!
 

Offline alsetalokin4017

  • Super Contributor
  • ***
  • Posts: 2055
  • Country: us
Re: TL494 Sim Test, Not Working.
« Reply #4 on: December 30, 2016, 01:39:40 am »
Instead of connecting the scope probe channels where you have them in the LED test schematic, connect them directly to pins 9 and 10 of the 494. You should see the complimentary square wave outputs of the 494 on the scope. The duty cycle should vary as you vary the setting of the 1k potentiometer.
« Last Edit: December 30, 2016, 01:42:05 am by alsetalokin4017 »
The easiest person to fool is yourself. -- Richard Feynman
 


Share me

Digg  Facebook  SlashDot  Delicious  Technorati  Twitter  Google  Yahoo
Smf