Hello,
What is the easiest way now to implement a home grown 7 or 8 digit converter these days?
I can only tell how I do it:
Select the best of a batch of 5V references. (T.C. < 1ppm/K and hysteresis < 1 ppm in near room temperature).
Combine with a LTC2400 and a LTC1043 divider.
Put a uC to the whole for transfer data to a PC and hold calibration constants and measure temperature of the reference.
Adjust NTC for temperature measurement (is optional since the true temperature is not essential).
Adjust T.C. of VREF with 3rd order calibration to better 1 ppm over a 10-40 deg C temperature range.
Adjust linearity to better 1 ppm with simple square approximation of the error curve.
Optional adjust Offset over temperature.
Adjust full scale (nominal VRef value at 25 deg).
Age the whole for 5000-10000 hrs.
Eventually repeat the calibrations.
What do you get after 2-3 weekends adjustment and the run in phase:
A unipolar +0..10V input range (up to now not very high impedant).
around 1-2uV resolution with a integration time of 1 minute.
(so more a old style Solartron than a modern instrument)
Better stability than a typical 6.5 digit instrument.
Allan deviation shows around a factor 5 worse than a 3458A.
(ok the 3458A is much faster with 100NPLC compared to 1 minute integration time).
Standard deviation against a LTZ1000A over 42 days is around 0.25ppm for my best devices.
Drift on ADC13 is nearly the same as on my LTZ#1.
(around 1 ppm/year + additional 1 ppm seasonal changes between ADC+LTZ1000A due to humidity).
With best regards
Andreas