Finally I'll present aux/bias power supply section that is required to power on primary side LM5041B (and indirectly Si8233 A-side through LM5041B) and on secondary side NFB control/tracker, Sync. rectification (SR) controller and provide all required voltages for connecting post-regulator similar to one used in EEZ H24005 Power board.
Coming to the final solution was an expectedly long journey caused with lots of presumptions and lack of experience. On the first CF-DIC PCB prototype I tried to use PI's TNY266GN flyback controller with few off-the-shelf transformers that has enough secondaries (four in total, or 3 + 1 AUX if you like). I was especially eager to see how Feryster's
2399 transformer will behave but end result was unacceptable, I suspect because of its primary inductance that is too low.
Mentioned controller is well packed and integrated (e.g. does need external switch and protection circuitry) with reasonable price.
In the meantime I found few interesting Quasi-resonant (QR) flyback controllers also well integrated and for even better price. I've decide to give a try to the latest (5th generation) ICE5QR4770A controller. Once again I found that mentioned Feryster is not a solution, and I tried another off-the-shelf transformer this time from WE (
750811914). This time I found another issue, ICE5 for unknown reason cannot start with been "kicking off" by applying shortly required bias supply. I tried to solve that with assistance of Infineon support but for unknown reason it didn't want to start, possibly because some of its protection mechanism is triggered.
Finally I found ST's VIPer family of QR controllers and decide to use
VIPer35 in my latest prototype. In parallel I've arranged with people from Feryster to design a
custom transformer in accordance with my specification.
That was a wining combination: nice flyback with broad input voltage range that works in QR mode with all needed output voltages. The latest schematic for that part of the CF-DIC is shown below. AC input section will be shared with CF-DIC power section.
Measurement on VIPer35 Drain pin without load (Vin=230 V
ac):
... or with moderate load applied:
It's clearly visible that VIPer35's internal MOSFET is switching on at the lowest point. That can be adjusted for the used transformer by changing the value of R
lim (R19).
Usual way of providing precise enough and cheap control loop with TL431/TL432 is not used since all critical outputs are additionally regulated by BJT or LDOs. Therefore just zener diode (ZD3) is used to set a main secondary output voltage.
Perhaps "double" rectification of AUX secondary shared between powering VIPer35 (D8, ZD2) and LM5041B (D1, Q1, ZD1) is not needed and can be reduced to single circuit. I have to test that further.
Your suggestions and comments are welcomed as usual.